ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:19.11KB ,
资源ID:28442244      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/28442244.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(老电厂循环水系统改造方式.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

老电厂循环水系统改造方式.docx

1、老电厂循环水系统改造方式老电厂循环水系统改造方式摘要:随着电力市场容量的扩大进展,一批老电厂由于发电机机组容量小运行本钱的高,投产时刻长且对环境污染严峻,已渐入超龄退役状态。国家制定的淘汰小型凝汽式机组、限制小型供热机组运行的政策,促使老电厂不能不扩大电厂生产建设规模,扩建容量大技术先进的机组,最终使老电厂循环水系统改造迫在眉睫,市场前景可期。 关键词:水泵高效范围 1. 概述 20世纪70年代末80年代初国家花费巨资投资建设了一批50MW以下火力发电厂,在那时的技术经济条件下这些电厂发挥了骨干电源点的作用。随着科学技术的进步与进展,大量200MW、300MW、600MW、900MW机组燃煤、

2、燃油、燃气电站接踵投产,更大规模的水利工程与核电站份份上马,那些旧日建成的火力发电厂无任在技术、经济与市场份额方面失去了竟争的优势,为了企业的生存和进展,这些小火力发电厂不能不扩大电厂生产建设规模,纷纷拆除小机组改建大容量机组,迫使电厂原有循环水系统不断进行更新改造。 湖北长源江津热电厂确实是一家运行30连年的老厂,通过量次扩建改造后, 拥有3XC12+1XB25+2xC50机组,汽轮发电机多容量小、循环水系统复杂。夏日所需循环冷却水量愈来愈大,但是江边取水能力却未取得改善,供水量严峻阻碍凝汽器冷却成效与汽轮机发电量。迫切需要对老电厂循环水系统进行改造,包括取水构筑物、取水设备、供水系统等一系

3、列设施进行合理的更新、重建。研究经济、合理的改造方法是本文即将讨论的重点。2.电厂水源长源江津热电厂位于湖北省沙市市长江边的外滩上临长江而建,距离城市中心约5千米,80年代曾经因为电厂治理好、厂区绿化率高被电力系统命名为花园式电厂。长江河道在厂址周围形成了较大的水流微弯段,电厂在微弯段的凹岸,而且取水口位置处河岸岸坡大于30度靠近主水流,长江主流水量丰沛水源变幅较大,长江高、低水位相差15米左右。长江最高洪水位(频率P=1% ) 米 (黄海高程) 设计枯水位(频率P=97%)为 米 (黄海高程)电厂采纳浮船取水方式取长江水源,取水泵布置在趸船的甲板上,在河岸边建有井字形混凝土支架,水泵出水管与

4、岸上固定循环水管采纳钢桁架摇臂联络管胶管式活动连接。为了保证供水系统的靠得住性和平安性,在取水河岸的岸坡的必然范围内进行抛石护岸处置。电厂目前运行1#、2#两条钢制趸船,其中1#趸船上装有4台24SH-18A循环水泵, 2#趸船上装有2台24SH-18A和两台32SH-19A共计8台循环水泵。3. 囤船取水现状湖北长源江津热电厂此刻拥有三类小型凝汽式机组、背压机组、抽凝式机组,因为汽轮发电机容量小、机组多、机组运行方式不同致使电厂供水系统相当复杂。电厂投产运行至今一直采纳直流供水系统,随着机组容量与数量增加电厂夏日所需循环冷却水量愈来愈大,但是江边取水能力却未取得改善,供水量严峻不足。电厂运行

5、机组的循环冷却水量计算见下表循环用水量表 水量单位为T/H序号汽机型号凝汽量凝汽器用水量空气冷却器油冷却器工业用水共计用水量夏日冬季夏日 冬季#331-12-24627602070 200/75225/4031852185#531-12-24627602070 200/75225/4031852185#7B25-90/10370238120718151815#8C50-90/131509000675012030620096267376#9C50-90/131509000675012030620096267376合计3462076015570810/6851075/890160727437209

6、37依照2C12+1B25+2C50五台机组夏日纯凝工况运行,供水系统计算的循环水量为27437m3/h;依照1B25+2C50三台机组夏日纯凝工况运行,供水系统计算的循环水量为21067 m3/h(2C12机组报废、停止运行)。目前电厂运行1#、2#两条钢制趸船,1#趸船安装4台24SH-18A Q=3000 m3/h H=23m水泵,2#趸船别离安装2台24SH-18A与2台32SH-19(Q=5000m3/h H=26m)水泵。24SH-18A水泵出水管管径为DN600,32SH-19水泵出水管管径为DN900。其中6根DN600联络管与岸上2根DN1000循环水供水母管连接,2根DN9

7、00联络管与岸上DN1400的循环水供水管连接,DN1000与DN1400的供水母管之间设置联络管连通。目前依照电厂运行人员反映,囤船取水量严峻不足,发电机不能满发的。供水不足与发电量之间的矛盾夏日显得尤其突出。那么是什么缘故造成供水量不足呢?咱们仍是从系统上分析。 缘故一: 水泵出水管与岸上母管之间的联络管直径偏小,出水管道流速太大,超出了水泵运行合理的流速范围,管道水头损失较大,能源浪费较多。水泵出水管管径为DN600:管道流量Q=3000 m3/h时水泵出水管流速为s,管道流量Q=5000 m3/h时水泵出水管流速高达s。水泵出水管管径为DN900:管道流量 Q=3000 m3/h时水泵

8、出水管流速为s;管道流量Q=5000 m3/h时水泵出水管流速为s。依照水工技术规定,管道流速在 m/s m/s属于平均经济流速的正常范围,超出那个流速范围必将引发水头损失增加、水泵扬程增大,电动机功率增大,直接浪费电力能源。缘故二:取水泵并联数量多、水泵供水量达不到设计流量。关于必然的长江水位,由于主厂房内汽轮机的标高不变,所有并联水泵扬程是相同的,现在凝汽器水头损失与循环水管道损失对各水泵是相同。可是同型号水泵并联运行,水泵总出水量可不能依照单台水泵出水量百分之百的数量叠加。例如:二台同型号水泵并联运行, 水泵实际出水总流量为190 %单台水泵流量,三台同型号水泵并联运行,水泵实际出水总流

9、量为251%单台水泵流量,泵实际出水总流量存在必然的折减系数。由于电厂水泵并联台数太多,水泵实际出水量的折减数专门大,以至水泵实际出水能力不足,造成供水量达不到供水系统的设计流量。缘故三: 取水泵型号不一,水泵流量、扬程转变步伐不一致,存在明显地阻滞作用。依照水泵性能曲线图,在水泵高效运行范围内,长江水位越低,水泵扬程越高水泵出水流量越小;长江水位越高,水泵扬程越小水泵出水流量越大。随着长江水位涨落改变(夏日洪水位高、冬季枯水位低),水泵扬程、流量改变,符合凝汽器冷却水季节转变要求。可是二种异型并联水泵在相同的扬程下,水泵运行会移出各自的“水泵高效范围”, 其工况转变步伐是不一致的。大流量、高

10、流速水泵对小流量、低流速水泵出水会造成明显地阻滞作用,运行工况会发生改变,水泵实际出水量达不到水泵额定出水量, 水泵的有效功功率降低,水泵运行效率降低,从而阻碍总循环水量及发电机出力;因此,在知足凝汽器机组冷却用水量前提下,循环水取水系统改造重点偏重于统一水泵型号、减少水泵运行台数;扩大水泵出口与岸上供水母管之间联络管,降低管道流速,减少管道水头损失,降低水泵运行扬程,增加水泵供水能力,减少水泵的无用功率,节约能量。 4电厂循环水系统改造方式 基于对电厂现行的供水系统的缺点分析,2002年咱们提出了电厂循环水系统的几种改造方案,从技术经济的角度来提高系统的供水量,降低电厂的能耗。 方式一:统一

11、水泵的型号、增加出水管的管道直径 新建一艘3#囤船,在船上安装三台水泵32SH-19A,趸船与岸边固定管道支架通过三根DN900的联络管连接,1#囤船4台24SH-18A循环水泵停止运行。取水系统改造后,电厂取水以2#、3#趸船为主,依照6台水泵运行设计(5台32SH-19A与1台24SH-18A),夏、冬季水泵运行均以32SH-19A为主,只有在运行水泵事故或检修时24SH-18A作为备用泵投入。 5取水泵台32SH-19A分成二路同型号水泵并联运行。一路管道为二台水泵与岸上DN1000循环水母管相连,水泵实际出流量为190%单台水泵流量,另一路管道为三台水泵与DN1400循环水母管相连,三

12、台水泵并联实际总流量为251%单台水泵流量,二路循环水管道实际出流量为441%单台水泵流量。 依照32SH-19A水泵性能曲线图,当水泵扬程为H=时Q=5000m3/h;当水泵扬程为H=时Q=5400m3/h,当扬程H=时Q=6000m3/h,在夏日凝汽器循环用水最大时,水泵的扬程大体运行在20米左右,循环水泵出流量大体稳固在5500m3/h-6000m3/h范围,依照相同扬程水泵流量叠加原理,循环水泵理论上供水能力将达到27000m3/h,水泵供水能力能够知足电厂供水要求。 32SH-19A水泵配用电动机功率为450KW,24SH-18A水泵配用功率为250KW,工程改造后5台32SH-19

13、A工作泵和1台24SH-18A备用水泵配用电动机总用电负荷2250KW;目前2台32SH-19A和6台24SH-18A水泵运行电动机的总负荷为2400KW,工程改造后不需要增加6000Kv低压厂变。 本方案极大地改善了水泵供水能力和水泵之间彼此备用条件,减少了水泵运行台数和水泵、阀门之间切换次数,降低了循环水泵的厂用电负荷,幸免了对现有1#、2#趸船船体、出水联络管改造尤其是岸边管道支架加固改造,对电厂运行可不能造成专门大阻碍。 2#趸船由运行2台32SH-19A、2台24SH-18A工作泵,改变成2台32SH-19A工作泵与1台24SH-18A备用水泵,减少了1台24SH-18A水泵运行,降

14、低了船体自重与船体振动,改善了船体平安运行条件。 可是电厂必需新购买一条囤船,安装三条出水联络管、三组钢桁架与三个江边管道支架。而且江边管道支架必需作桩基处置,承台桩必需深切河床底持力层,囤船取水范围需做抛石护岸处置。 方式二:供水系统依照水泵型号分开设置 2#取水趸船安装4台32SH-19A水泵,趸船与岸边固定管道支架通过四根DN900联络管连接,1#囤船4台24SH-18A循环水泵不变。 1#、2#趸船8台水泵分成二路同型号并联运行。一路管道为四台24SH-18A水泵与岸上DN1000循环水母管相连,另一路管道系统为四台32SH-19A水泵与DN1400循环水母管相连。依照水泵性能曲线当水

15、泵H=时32SH-19AQ=5000m3/h、24SH-18AQ=2500m3/h;当H=时32SH-19AQ=5470m3/h、24SH-18AQ=2950m3/h;当H=时32SH-19AQ=6000m3/h、24SH-18AQ=3100m3/h。由于水泵型号不一,依照水泵并联运行相同扬程下水泵流量叠加原理,水泵实际出流量为284%单台水泵流量,在夏日循环用水量最大时,水泵扬程大体运行在20米左右,总循环水流量稳固在23912m3/h-25844m3/h范围内,能够知足电厂2C50+B25+C12四台机组运行要求。1#、2#趸船由2台32SH-19A、6台24SH-18A工作泵改变成4台3

16、2SH-19A、4台24SH-18A工作泵,改善了水泵供水能力和水泵彼此备用条件。 32SH-19A、24SH-18A水泵配用电动机功率别离为450KW、250KW,循环水泵改造后4台32SH-19A和4台24SH-18A运行电动机的总用电负荷2800KW;比目前2台32SH-19A和6台24SH-18A水泵运行电动机总负荷2400KW需要增加6000Kv低压厂变400KW。 由于2#趸船船体上已承载了二台32SH-19A与二台24SH-18A水泵,要在船体上布置四台32sh-19A水泵,船体自重由吨变成吨,因此船体尺寸由原先扩大为,改善船体平安运行条件。需要购买一条新船。只是2#原有水泵DN

17、600出水管联络管必需全数改造为DN900联络管,四条出水联络管布置二组钢桁架上,维持原有钢桁架与江边管道支架,现有2米钢桁架因为钢管自重和水重增加需要加固,江边钢筋混凝土支架也需要加固处置。改造联络管与江边管道支架对电厂生产运行会造成阻碍。 5技术经济比较: 方案一:电厂取水以2#、3#趸船为主(新建3#趸船,1#囤船停止运行),将极大地改善了水泵供水能力和水泵备用条件,减少水泵运行台数、水泵、阀门切换次数和厂用电负荷,同时幸免了现有1#、2#趸船船体、出水联络管、岸边管道支架改造,对电厂运行可不能造成太大的阻碍。3#囤船船体、水泵、阀门、出水联络管、岸边管道支架安装完毕后在岸上与DN140

18、0循环水管对接,从技术方面看可行,经济方面:设备与安装费用为273万(见预算表)。 方案二:将2#趸船改换成新囤船,以1#、2#趸船取水运行为主,水泵供水能力和水泵备用条件有必然改善,可是增加了厂用电负荷,现有2#趸船船体、出水联络管尤其是岸边管道支架加固改造,对电厂运行造成专门大阻碍。与方案一相较阻碍时刻长,难度大。技术方面可行,经济方面:设备与安装费用为万(见预算表)。 综合技术经济分析比较方案一例如案二有优越性。 6结论: 老电厂供水系统的改造必需结合工程的具体情形进行分析,依照供水平安靠得住的原那么保证电厂运行,同时节能降耗,提高水泵的工作效率。关于处于转型期的老电厂,循环水系统的改造不可幸免,设计行业前景可期。 1参考文献给水排水设计手册火力发电厂水工设计技术规定

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1