1、秋北京课改版数学九上第22章圆单元测试第22章圆(下)单元测试一.单选题(共10题;共30分)1.一个钢管放在V形架内,下是其截面图,O为钢管的圆心如果钢管的半径为25 cm,MPN = 60,则OP 的长为A.50 cmB.25cmC.cmD.cm2.如图,在矩形ABCD中,BC=8,AB=6,经过点B和点D的两个动圆均与AC相切,且与AB、BC、AD、DC分别交于点G、H、E、F,则EF+GH的最小值是( )A.6B.8C.9.6D.103.O的半径为4,圆心O到直线l的距离为3,则直线l与O的位置关系是() A.相交B.相切C.相离D.无法确定4.(2018黔西南州)如图,点P在O外,P
2、A、PB分别与O相切于A、B两点,P=50,则AOB等于() A.150B.130C.155D.1355.如图,在RtABC中,C=90,B=60,内切圆O与边AB、BC、CA分别相切于点D、E、F,则DEF为()A.55B.60C.75D.806.如图,PA、PB分别切O于A、B,PA=10cm,C是劣弧AB上的点(不与点A、B重合),过点C的切线分别交PA、PB于点E、F则PEF的周长为()A.10cmB.15cmC.20cmD.25cm7.如图,PA,PB分别与O相切于A,B两点,点E在上,过点E作O的切线,分别与PA,PB相交于点C,D若PA=3cm,则PCD的周长等于()A.3cmB
3、.6cmC.9cmD.12cm8.已知O的半径为6cm,圆心O到直线l的距离为5cm,则直线l与O的交点个数为() A.0B.1C.2D.无法确定9.(2018盘锦)如图,ABC中,AB=6,AC=8,BC=10,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A.相交B.相切C.相离D.无法确定10.下列说法中,不正确的是() A.与圆只有一个交点的直线是圆的切线B.经过半径的外端,且垂直于这条半径的直线是圆的切线C.与圆心的距离等于这个圆的半径的直线是圆的切线D.垂直于半径的直线是圆的切线二.填空题(共8题;共24分)11.ABC中,C=90,I为内心,则AIB=_度
4、 12.如图,在三角形ABC中,A=70,O截ABC的三边所得的弦相等,则BOC=_13.如图,AB是O的直径,点D在AB的延长线上,DC切O于点C,若A=25,则D等于_14.如图,点A、B在直线l上,AB=10cm,B的半径为1cm,点C在直线l上,过点C作直线CD且DCB=30,直线CD从A点出发以每秒4cm的速度自左向右平行运动,与此同时,B的半径也不断增大,其半径r(cm)与时间t(秒)之间的关系式为r=1+t(t0),当直线CD出发_秒直线CD恰好与B相切15.矩形ABCD中,AB=4,AD=3,以AB为直径在矩形内作半圆DE切O于点E(如图),则tanCDF的值为_16.(201
5、8孝感)九章算术是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步”该问题的答案是_步 17.如图,ACB=60,半径为1cm的O切BC于点C,若将O在CB上向右滚动,则当滚动到O与CA也相切时,圆心O移动的水平距离是_cm 18.如图所示,PA、PB切O于点A、B,连接AB交直线OP于点C,若O的半径为3,PA=4,则OC的长为_ 三.解答题(共6题;共36分)19.如图,已知AB是O的直径,点C在O上,过点C的直线与AB的延长线交于点P,ACPC,COB
6、2PCB(1)求证:PC是O的切线(2)求证:BC12AB;(3)点M是弧AB的中点,CM交AB于点N,若AB4,求MN MC的值 20.如图在RtABC中,C90,点D是AC的中点,且ACDB90,过点A、D作O,使圆心O在AB上,O与AB交于点E.(1)求证:直线BD与O相切;(2)若AD:AE4:5,BC6,求O的直径 21.已知ABC,求作内切圆(保留作图痕迹,不写作法)22.已知:如图,O是RtABC中的内切圆,切点分别为D、E、F,且C=90,AC=6cm,BC=8cm求:O的半径是多少cm?23.如图,AB为O的直径,PQ切O于E,ACPQ于C,交O于D(1)求证:AE平分BAC
7、;(2)若AD=2,EC=3 , BAC=60,求O的半径24.如图,在ABC中,BA=BC,以AB为直径的O分别交AC、BC于点D、E,BC的延长线于O的切线AF交于点F(1)求证:ABC=2CAF;(2)若AC=, CE:EB=1:4,求CE的长四.综合题(共1题;共10分)25.小明所在数学兴趣小组,计划用尺规作图作直角三角形,且这个直角三角形的一条边为2倍的单位长度,另一条边为4倍的单位长度(1)请你帮忙小明作出所有满足条件的直角三角形(全等的图形记为1个);(2)求所得直角三角形内切圆的半径长 答案解析部分一.单选题1.【答案】A 【考点】切线的性质 【解析】【分析】钢管放在V形架内
8、,则钢管所在的圆与V形架的两边相切,根据切线的性质可知OMP是直角三角形,且OPM=OPN=30,根据三角函数就可求出OP的长【解答】圆与V形架的两边相切,OMP是直角三角形中OPN=MPN=30,OP=2ON=50cm故选A【点评】本题主要考查了切线的性质定理,解题的关键是将此问题转化为解直角三角形的问题来解决2.【答案】C 【考点】切线的性质 【解析】【分析】如图,设GH的中点为O,过O点作OMAC,过B点作BNAC,垂足分别为M、N,根据B=90可知,点O为过B点的圆的圆心,OM为O的半径,BO+OM为直径,可知BO+OMBN,故当BN为直径时,直径的值最小,即直径GH也最小,同理可得E
9、F的最小值【解答】如图,设GH的中点为O,过O点作OMAC,过B点作BNAC,垂足分别为M、N,在RtABC中,BC=8,AB=6,AC=10,由面积法可知,BNAC=ABBC,解得BN=4.8,B=90,GH为O的直径,点O为过B点的圆的圆心,O与AC相切,OM为O的半径,BO+OM为直径,又BO+OMBN,当BN为直径时,直径的值最小,此时,直径GH=BN=4.8,同理可得:EF的最小值为4.8,EF+GH的最小值是9.6故选C3.【答案】A 【考点】直线与圆的位置关系 【解析】【分析】根据直线和园的位置关系可知,圆的半径小于直线到圆距离,则直线l与O的位置关系是相离【解答】O的半径为5,
10、圆心O到直线的距离为3,直线l与O的位置关系是相交故选A【点评】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可 4.【答案】B 【考点】切线的性质 【解析】【解答】PA、PB是O的切线,PAOA,PBOB,PAO=PBO=90,P=50,AOB=130故选B【分析】由PA与PB为圆的两条切线,利用切线性质得到PA与OA垂直,PB与OB垂直,在四边形APBO中,利用四边形的内角和定理即可求出AOB的度数 5.【答案】C 【考点】三角形的内切圆与内心 【解析】【解答】解:连接OD、OF,在RtABC中,C=90,B=60,A=30,O是ACB的内切圆,切点分别是D、E、F,ADO
11、=AEO=90,DOE=360903090=150,DEF=DOF=75,故选C【分析】连接OD、OF,根据三角形内角和定理求出A,根据切线的性质求出ADO=AEO=90,求出DOF,根据圆周角定理求出即可 6.【答案】C 【考点】切线的性质 【解析】【解答】解:PA、PB分别切O于A、B,PB=PA=10cm,EA与EC为的切线,EA=EC,同理得到FC=FB,PEF的周长=PE+EF+PF=PE+EC+FC+PF=PE+EA+FB+PF=PA+PB=10+10=20(cm)故选C【分析】根据切线长定理由PA、PB分别切O于A、B得到PB=PA=10cm,由于过点C的切线分别交PA、PB于点
12、E、F,再根据切线长定理得到EA=EC,FC=FB,然后三角形周长的定义得到PEF的周长=PE+EF+PF=PE+EC+FC+PF,用等线段代换后得到三角形PEF的周长等于PA+PB 7.【答案】B 【考点】切线的性质 【解析】【解答】解:PA,PB切O于A、B两点,CD切O于点E,PB=PA=10,CA=CE,DB=DE,PCD的周长=PC+CE+PD=PC+CE+DE+PC=PC+CA+DB+PD=PA+PB=6cm;故PCD的周长是6cm故选:B【分析】由PA,PB切O于A、B两点,CD切O于点E,根据切线长定理可得:PB=PA=10,CA=CE,DB=DE,继而可得PCD的周长=PA+
13、PB 8.【答案】C 【考点】直线与圆的位置关系 【解析】【解答】解:O的半径为6cm,圆心O到直线l的距离为5cm,6cm5cm,直线l与O相交,直线l与O有两个交点故选C【分析】先根据题意判断出直线与圆的位置关系即可得出结论 9.【答案】A 【考点】直线与圆的位置关系 【解析】【解答】解:过点A作AMBC于点M,交DE于点N,AMBC=ACAB,AM=4.8,D、E分别是AC、AB的中点,DEBC,DE=BC=5,AN=MN=AM,MN=2.4,以DE为直径的圆半径为2.5,r=2.52.4,以DE为直径的圆与BC的位置关系是:相交故选:A【分析】首先根据三角形面积求出AM的长,进而得出直
14、线BC与DE的距离,进而得出直线与圆的位置关系 10.【答案】D 【考点】切线的判定 【解析】【解答】解:A、与圆只有一个交点的直线是圆的切线这是切线的定义同时也是切线的一种判定方法,故本选项说法是正确的;B、经过半径的外端,且垂直于这条半径的直线是圆的切线是切线的判定定理,故本选项说法是正确的;C、与圆心的距离等于这个圆的半径的直线是圆的切线即d=r,故本选项说法是正确的;D、垂直于半径的直线是圆的切线也有可能是圆的割线,故本选项说法是不正确的;故选D【分析】根据切线的判定方法逐项分析即可 二.填空题11.【答案】135 【考点】三角形的内切圆与内心 【解析】【解答】解:C=90,CBA+C
15、AB=90,点I为ABC的内心,ABI=12ABC,BAI=12ACB,ABI+BAI=12(CBA+CAB)=45,AIB=180(ABI+BAI)=135故答案为:135【分析】根据直角三角形的性质和内心的性质得出ABI+BAI=45,进而利用三角形内角和定理得出AIB的度数 12.【答案】125 【考点】三角形的内切圆与内心 【解析】【解答】解:O截ABC的三边所得的弦相等,O到ABC三边的距离相等,O在三角形的角的平分线上,即O是ABC的内心OBC=12ABC,OCB=12ACB,OBC+OCB=12(ABC+ACB),又ABC中,ABC+ACB=180A=18070=110OBC+O
16、CB=55,BOC=180(OBC+OCB)=18055=125故答案是:125【分析】根据弦相等,则对应的弦心距相等,即O到ABC的三边相等,则O是ABC的内心,然后根据内心的性质求解 13.【答案】40 【考点】切线的性质 【解析】【解答】解:连接OC,DC切O于C,OCD=90,弧BC对的圆周角是A,对的圆心角是COB,COB=2A=50,D=180DCOCOB=40,故答案为:40【分析】连接OC,根据圆周角定理求出COB,根据切线性质得出OCD=90,根据三角形内角和定理求出即可 14.【答案】43或6 【考点】直线与圆的位置关系 【解析】【解答】解:当直线与圆相切时,点C在圆的左侧
17、,DCB=30,直线CD与B相切,2DB=BC,即2(1+t)=104t,解得:t=43 , 当直线与圆相切时,点C在圆的右侧,DCB=30,直线CD与B相切,2DB=BC,即2(1+t)=4t10,解得:t=6,故答案为:43或6【分析】根据直线与圆相切和勾股定理,圆的半径与BC的关系,注意有2种情况解答即可 15.【答案】512 【考点】切线的性质 【解析】【解答】解:四边形ABCD为矩形,A=B=C=90,CD=AB=4,AD=BC=3,AB为直径,AD、BC与半圆相切,而DE切O于点E,DA=DE=3,BF=EF,设CF=x,则BF=EF=3x,DF=DE+EF=6x,在RtDCF中,
18、CF2+CD2=DF2 , x2+42=(6x)2 , 解得x=53 , tanCDF=534=512 故答案为512 【分析】根据矩形的面积得A=B=C=90,CD=AB=4,AD=BC=3,则可判断AD、BC与半圆相切,根据切线长定理得到DA=DE=3,BF=EF,设CF=x,则BF=EF=3x,在RtDCF中利用勾股定理得到x2+42=(6x)2 , 解得x=53 , 然后根据正切的定义求解 16.【答案】6 【考点】三角形的内切圆与内心 【解析】【解答】解:根据勾股定理得:斜边为 =17, 则该直角三角形能容纳的圆形(内切圆)半径r= =3(步),即直径为6步,故答案为:6【分析】根据
19、勾股定理求出直角三角形的斜边,根据直角三角形的内切圆的半径的求法确定出内切圆半径,得到直径此题考查了三角形的内切圆与内心,掌握RtABC中,两直角边分别为为a、b,斜边为c,其内切圆半径r= 是解题的关键 17.【答案】3 【考点】切线的性质 【解析】【解答】解:如图,当圆O滚动到圆W位置与CA,CB相切,切点分别为E,F; 连接WE,WF,CW,OC,OW,则OW=CF,WF=1,WCF= 12 ACB=30,所以点O移动的距离为OW=CF=WFcotWCF=WFcot30= 3 【分析】根据题意画图,当圆O滚动到圆W位置与CA,CB相切,切点分别为E,F,连接WE,WF,CW,OC,OW,
20、则四边形OWC是矩形;构造直角三角形利用直角三角形中的30角的三角函数值,可求得点O移动的距离为OW=CF=WFcotWCF=WFcot30= 3 18.【答案】【考点】切线的性质 【解析】【解答】解:连接AO, PA、PB是O的两条切线,OAPA,PA=PB,APO=BPO,ABOP,AP=4,AO=3,OP= =5,AC= = ,OC= = 故答案为: 【分析】由PA、PB是O的两条切线,可得OAPA,PAB是等腰三角形,即可得ABOP,然后由勾股定理求得OP长,再利用三角形面积的求解方法即可求得AC长,继而求得答案 三.解答题19.【答案】解:(1)OAOC,AACO又COB2A, CO
21、B2PCB,AACOPCB又AB是O的直径,ACO+OCB90PCB+OCB90,即OCCP,而OC是O的半径,PC是O的切线(2)ACPC,AP,AACOPCBP,又COBA+ACO, CBOP+PCBCOBCBO, BCOC, BC12AB(3)连接MA、MB点M是AB的中点,AMBM,ACMBCM而ACMABM, BCMABM,而BMNBMCMBNMCB, BMMC=MNBMMNMCBMBM又AB是O的直径,AMBMAMB90,AMBMAB4,BM22MNMCBM28 【考点】切线的判定 【解析】【解答】(1)证明PC为切线,只需证明半径OC垂直于CP,(2)根据相应的角的关系得出BC=
22、OC=OB,最后得出BC12AB,(3)通过证明MBNMCB,得出对应边成比例进而求出MNMCBM28。【分析】考查切线的判定,利用三角形以及圆的性质,求得线段的长度。 20.【答案】(1)证明:连接OD,在AOD中,OAOD,AODA,又ACDB90ODACDB90,BDO1809090,即ODBD,BD与O相切(2)解:连接DE,AE是O的直径,ADE90,DEBC.又D是AC的中点,AEBE.AEDABC.ACABADAE.ACAB45,令AC4x,AB5x,则BC3x.BC6,AB10,AE5,O的直径为5. 【考点】切线的判定 【解析】【分析】考查切线的判定。 21.【答案】解:如图
23、所示:O即为所求【考点】三角形的内切圆与内心 【解析】【分析】首先作出三角形的内角平分线,进而得出交点即为圆心位置,再向角的一边作垂线得出半径长,进而画出即可 22.【答案】解:设O半径是rcm,连接OA、OB、OC、OD、OE、OF,如图所示:O为ABC的内切圆,切点是D、E、F,ODAB,OEBC,OFAC,OD=OE=OF=r,AC=6,BC=8,由勾股定理得:AB=10,根据三角形的面积公式得:SACB=SOAC+SOBC+SOAB , 12ACBC=12ACr+12BCr+12ABr,即:1268=126r+128r+1210r,解得:r=2;即:O的半径是2cm【考点】三角形的内切
24、圆与内心 【解析】【分析】设O半径是rcm,连接OA、OB、OC、OD、OE、OF,根据勾股定理求出AB,根据三角形的面积公式得出SACB=SOAC+SOBC+SOAB , 代入求出即可 23.【答案】(1)证明:连接OE,OA=OE,OEA=OAEPQ切O于E,OEPQACPQ,OEACOEA=EAC,OAE=EAC,AE平分BAC(2)解:连接BE,AB是直径,AEB=90BAC=60,OAE=EAC=30AB=2BEACPQ,ACE=90,AE=2CECE=3,AE=23设BE=x,则AB=2x,由勾股定理,得x2+12=4x2 , 解得:x=2AB=4,O的半径为2【考点】切线的性质 【解析】【分析】(1)连接OE,根据切线的性质就可以得出OEPQ,就可以得出OEAC,可以得出BAE=CAE而得出结论;(2)连接BE,由AE平分BAC就可以得出BAE=CAE=30,就可以求出AE=23 , 在RtABE中由勾股定理可以求出AB的值,从而求出
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1