ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:23.94KB ,
资源ID:27551438      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/27551438.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(工业工程英文文献及外文翻译.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

工业工程英文文献及外文翻译.docx

1、工业工程英文文献及外文翻译附录附录1:英文文献Line Balancing in the Real WorldAbstract: Line Balancing (LB) is a classic, well-researched Operations Research (OR) optimization problem of significant industrial importance. It is one of those problems where domain expertise does not help very much: whatever the number of ye

2、ars spent solving it, one is each time facing an intractable problem with an astronomic number of possible solutions and no real guidance on how to solve it in the best way, unless one postulates that the old way is the best way .Here we explain an apparent paradox: although many algorithms have bee

3、n proposed in the past, and despite the problems practical importance, just one commercially available LB software currently appears to be available for application in industries such as automotive. We speculate that this may be due to a misalignment between the academic LB problem addressed by OR,

4、and the actual problem faced by the industry.Keyword: Line Balancing, Assembly lines, OptimizationLine Balancing in the Real WorldEmanuel FalkenauerOptimal DesignAv. Jeanne 19A bote2, B-1050 Brussels, Belgium+32 (0)2 646 10 741 IntroductionAssembly Line Balancing, or simply Line Balancing (LB), is t

5、he problem of assigning operations to workstations along an assembly line, in such a way that the assignment be optimal in some sense. Ever since Henry Fords introduction of assembly lines, LB has been an optimization problem of significant industrial importance: the efficiency difference between an

6、 optimal and a sub-optimal assignment can yield economies (or waste) reaching millions of dollars per year. LB is a classic Operations Research (OR) optimization problem, having been tackled by OR over several decades. Many algorithms have been proposed for the problem. Yet despite the practical imp

7、ortance of the problem, and the OR efforts that have been made to tackle it, little commercially available software is available to help industry in optimizing their lines. In fact, according to a recent survey by Becker and Scholl (2004), there appear to be currently just two commercially available

8、 packages featuring both a state of the art optimization algorithm and a user-friendly interface for data management. Furthermore, one of those packages appears to handle only the “clean” formulation of the problem (Simple Assembly Line Balancing Problem, or SALBP), which leaves only one package ava

9、ilable for industries such as automotive. This situation appears to be paradoxical, or at least unexpected: given the huge economies LB can generate, one would expect several software packages vying to grab a part of those economies. It appears that the gap between the available OR results and their

10、 dissemination in Todays industry, is probably due to a misalignment between the academic LB problem addressed by most of the OR approaches, and the actual problem being faced by the industry. LB is a difficult optimization problem even its simplest forms are NP-hard see Garry and Johnson, 1979), so

11、 the approach taken by OR has typically been to simplify it, in order to bring it to a level of complexity amenable to OR tools. While this is a perfectly valid approach in general, in the particular case of LB it led some definitions of the problem hat ignore many aspects of the real-world problem.

12、 Unfortunately, many of the aspects that have been left out in the OR approach are in fact crucial to industries such as automotive, in the sense that any solution ignoring (violating) those aspects becomes unusable in the industry.In the sequel, we first briefly recall classic OR definitions of LB,

13、 and then review how the actual line balancing problem faced by the industry differs from them, and why a solution to the classic OR problem maybe unusable in some industries.2 OR Definitions of LBThe classic OR definition of the line balancing problem, dubbed SALBP (Simple Assembly Line Balancing P

14、roblem) by Becker and Scholl (2004), goes as follows. Given a set of tasks of various durations, a set of precedence constraints among the tasks, and a set of workstations, assign each task to exactly one workstation in such a way that no precedence constraint is violated and the assignment is optim

15、al. The optimality criterion gives rise to two variants of the problem: either a cycle time is given that cannot be exceeded by the sum of durations of all tasks assigned to any workstation and the number of workstations is to be minimized, or the number of workstations is fixed and the line cycle t

16、ime, equal to the largest sum of durations of task assigned to a workstation, is to be minimized.Although the SALBP only takes into account two constraints (the precedence constraints plus the cycle time, or the precedence constraints plus the number of workstations), it is by far the variant of lin

17、e balancing that has been the most researched. We have contributed to that effort in Falkenauer and Delchambre (1992), where we proposed a Grouping Genetic Algorithm approach that achieved some of the best performance in the field. The Grouping Genetic Algorithm technique itself was presented in det

18、ail in Falkenauer (1998).However well researched, the SALBP is hardly applicable in industry, as we will see shortly. The fact has not escaped the attention of the OR researches, and Becker and Scholl (2004) define many extensions to SALBP, yielding a common denomination GALBP (Generalized Assembly

19、Line Balancing Problem). Each of the extensions reported in their authoritative survey aims to handle an additional difficulty present in real-world line balancing. We have tackled one of those aspects in Falkenauer (1997), also by applying the Grouping Genetic Algorithm.The major problem with most

20、of the approaches reported by Becker and Scholl (2004) is that they generalize the simple SALBP in just one or two directions. The real world line balancing, as faced in particular by the automotive industry, requires tackling many of those generalizations simultaneously.3 What Differs in the Real W

21、orld?Although even the simple SALBP is NP-hard, it is far from capturing the true complexity of the problem in its real-world incarnations. On the other hand, small instances of the problem, even though they are difficult to solve to optimality, are a tricky target for line balancing software, becau

22、se small instances of the problem can be solved closet optimality by hand. That is however not the case in the automotive and related industries (Bus, truck, aircraft, heavy machinery, etc.), since those industries routinely feature Assembly lines with dozens or hundreds of workstations, and hundred

23、s or thousands of Operations. Those industries are therefore the prime targets for line balancing software.Unfortunately, those same industries also need to take into account many of the GALBP extensions at the same time, which may explain why, despite the impressive OR Work done on line balancing;

24、only one commercially available software seems tube currently available for those industries.We identify below some of the additional difficulties (with respect to SALBP) that must be tackled in a line balancing tool, in order to be applicable in those industries.3.1 Do Not Balance but Re-balance Ma

25、ny of the OR approaches implicitly assume that the problem to be solved involves a new, yet-to-be-built assembly line, possibly housed in a new, yet-to-be-built factory. To our opinion, this is the gravest oversimplification of the classic OR approach, for in practice, this is hardly ever the case.

26、The vast majority of real-world line balancing tasks involve existing lines, housed in existing factories infect, the target line typically needs tube rebalanced rather than balanced, the need arising from changes in the product or the mix of models being assembled in the line, the assembly technolo

27、gy, the available workforce, or the production targets. This has some far-reaching implications, outlined below.3.2 Workstations Have IdentitiesAs pointed out above, the vast majority of real-world line balancing tasks involves existing lines housed in existing factories. In practice, this seemingly

28、 “uninteresting” observation has one far-reaching consequence, namely that each workstation in the line does have its own identity. This identity is not due to any “incapacity of abstraction” on part of the process engineers, but rather to the fact that the workstations are indeed not identical: eac

29、h has its own space constraints (e.g. a workstation below a low ceiling cannot elevate the car above the operators heads), its own heavy equipment that cannot be moved spare huge costs, its own capacity of certain supplies (e.g. compressed air), its own restrictions on the operations that can be car

30、ried out there (e.g. do not place welding operations just beside the painting shop), etc.3.3 Cannot Eliminate Workstations Since workstations do have their identity (as observed above), it becomes obvious that a real-world LB tool cannot aim at eliminating workstations. Indeed, unless the eliminated

31、 workstations were all in the front of the line or its tail, their elimination would create gaping holes in the line, by virtue of the other workstations retaining of their identities, including their geographical positions in the workshop. Also, it softens the case that many workstations that could

32、 possibly be eliminated by the algorithm are in fact necessary because of zoning constraints.4 ConclusionsThe conclusions inspection 3 stems from our extensive contacts with automotive and related industries, and reflects their true needs. Other “exotic” constraints may apply in any given real-world

33、 assembly line, but line balancing tool for those industries must be able to handle at least those aspects of the problem. This is very far from the “clean” academic SALBP, as well as most GALBP extensions reported by Becker and Scholl (2004). In fact, such a tool must simultaneously solve several-hard problems: Fi

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1