ImageVerifierCode 换一换
格式:DOCX , 页数:26 ,大小:285.72KB ,
资源ID:27257522      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/27257522.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(热管散热技术解析.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

热管散热技术解析.docx

1、热管散热技术解析Harbin Institute of Technology题 目: 热管散热技术 院 系: 能源学院 班 级: 1002104 姓 名:林家勇 田赫 郭男杰 段亮亮 李勇 哈尔滨工业大学热管散热技术林家勇,田赫,郭男杰,段亮亮,李勇(哈尔滨工业大学热能与动力工程、1002104班)摘 要:热管技术是20 tit纪 60 年代出现的一种传热新技术 ,其导热能力超过任何已知金庸 的导热能力 ,在散热器和l造行业 占有重要的地位,本文从热管的基本原理 、特性、类别、相容 性、热管的制造及加工工艺和热笛的应用与发展等几个方面对热管技术作一简要的阐述 。 关键词:热管技术 管壳 管芯

2、工质Abstract: Heat pipe technology is a heat conduction innovation emerged in 1960s, of which the heat conduction capability is superior to all other existing metal. Heat pipe plays veY important role in heat sink manufacturing industry. In this paper, the working principle, characteristic , category,

3、 compatibility, workmanship and application of heat pipe is introduced.Key words: Heat pipe technology Pipe shell Pipe core Refrigerant1 前言热导管(或称热管)系一种具有快速均温特性的特殊材料,其中空的金属管体,使其具有质轻的特点,而其快速均温的特性,则使其具有优异的热超导性能;热管的运用范围相当广泛,最早期运用于航天领域,现早已普及运用于各式热交换器、冷却器、天然地热引用等,担任起快速热传导的角色,更是现今电子产品散热装置中最普遍高效的导热(非散热)元件。2

4、 热管结构类型与特点热管典型结构以及工作原理热管的基本工作典型的热管由管壳、吸液芯和端盖组成,将管内抽成13(10负110负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。如此循环不己,热量由热管的一端传至另端。热管在实现这一热量转移的过程中,包含了以下六个相互关联的主要过程: (1)热量从热源通过热管管壁和充满工作液体的吸液芯传递到

5、(液汽)分界面; (2)液体在蒸发段内的(液汽)分界面上蒸发; (3)蒸汽腔内的蒸汽从蒸发段流到冷凝段; (4)蒸汽在冷凝段内的汽液分界面上凝结: (5)热量从(汽液)分界面通过吸液芯、液体和管壁传给冷源: (6)在吸液芯内由于毛细作用使冷凝后的工作液体回流到蒸发段。热管规格如下直径 mm长度 mm 备注3 0-280 圆热管 烧结 / 铜网 4 0-280 圆热管 烧结 / 铜网 5 0-280 圆热管 烧结 / 铜网 6 0-280 圆热管 烧结 / 铜网 6.35 0-280 圆热管 烧结 / 铜网 8 0-280 圆热管 烧结 / 铜网 10 圆热管 底座 铜网 25.4 30-100

6、 圆热管 底座 烧结 / 铜网 T=3 0-280 压扁 烧结 / 铜网 T=4 0-280 压扁 烧结 / 铜网 T=5 0-280 压扁 烧结 / 铜网 热管工质特性如下表工质名称 熔点 C 沸点 C 临界温度 C临界压力 Pa 工作温度范围 C 品质因数 N kW/m2甲 烷 -184 -161 -82 45X105 -173-100 氨 -78 -33 132 112.7X105-60 100 11.8X107氟里昂 21 -135 9 179 50.96X105-103 127 2.2X107氟里昂 11 -111 24 198 43.12X105-40120 1.2X107戊烷 -

7、130 28 197 32.24X105-20120 1.6X107氟里昂 113 -35 48 197 53.9X105-10100 7.3X107丙酮 -95 57 237 47.04X1050-120 3.2X107甲醇 -98 64 240 78.4X10510-130 4.7X107乙醇 78 243 61.74X1050-130 2.9X107庚醇 -90 98 267 26.46X1050-150 1.2X107水 0 100 374 219.52X10530-200 4.6X107导热姆 A 12 257 150-395 1.9X107液芯类型单层、多层丝网格吸液芯,烧结粉末吸

8、液芯,轴向槽道吸液芯,组合型吸液芯。 常用吸液芯特性如下表吸液芯型式 特征尺寸m 有效毛细孔径X10 -3m 最大提升高度 (100C 水 ),mm 渗透率 X10-10m2 30 目网芯 0.5X10-3 0.43 29 25 100 目网芯 0.14X10-3 0.12 104 1.8 200 目网芯 0.07X10-3 0.063 197 0.55 烧结毡或粉末 0.01-0.1 1250-125 0.1-10 轴向槽道 0.25-1.5 0.25-1.5 50-8 35-1250 金属纤维 0.01-0.05 125-350 0.1-0.5 热管折弯工艺折 弯 规 格 管径(mm) 最

9、小折弯 R (mm) 建议 R (mm)最小折弯角 建议弯角 3 9 12 90 120 4 12 16 5 15 20 6 18 24 8 24 32 9 27 36 9.35 28 37 热管的传热原理及其应用特点 在众多的传热元件中,热管是人们所知的最有效的传热元件之一,它可将大量的热量通过其很小截面积远距离地传输而无需外加动力。国际上对热管技术的研究和应用是在20世纪60年代开始的。我国在这方面的研究起始于上世纪70年代,当时主要侧重的方向为电子器件冷却和空间飞行器上的应用。80年代初,我国的热管研究和开发重点转向节能和能源的合理利用,相继开发了热管气气换热器、热管余热锅炉、高温热管蒸

10、汽发生器等各类热管产品。由于碳钢水重力热管的结构简单、价格低廉、制造方便、易于推广,使得此类热管得到了广泛的应用。随着科学技术的不断提高,热管研究和应用的领域也在不断拓宽。目前,热管及热管换热器已广泛应用于石油、化工、动力、冶金、建材、轻工等领域的高效传热设备,以及电子装置芯片冷却、笔记本电脑CPU冷却及电路控制板等的冷却。目前,除微型热管已批量化、大规模生产外,工业中余热回收用的热管换热器由于各种设备规模、大小、使用情况的不同,几乎每台设备都根据设备的工艺条件、现场情况设计、制造。热管结构分类 1、 热熔渣结构从字面上解释,这种热管的内部结构就像是烧焦的蜂窝煤或是热炉渣。看似粗糙的内壁中,遍

11、布各种细小的孔洞。他们就像是人身体上的毛细血管一样。热管内的液体会在这些小孔中穿梭,形成强大的虹吸力量。事实上,制作这样热管的工艺比较复杂,将铜粉加热到一定温度,在其未完全融化的之前,铜粉颗粒额边沿会首先融化,粘连四周的铜粉。这样就形成了现在你所见到的镂空结构。从图中看,也许会认为它非常绵软,但事实上,这种热熔渣既不绵软也不松散,而是非常坚固。因为它是铜粉经过高温加热的物质,所以在他们冷却之后,就恢复了金属本来的坚硬质感。另外从制造的角度看,这种制程和结构的热管制造成本较高。 2、沟槽结构沟槽结构沟槽结构沟槽结构 这种热管的内部结构设计就像是一条条平行的沟渠一样。它的作用也是像毛细血管一样,回

12、流的液体通过这些沟槽迅速在热管中进行传导。但是根据开槽的精密细腻情况,根据制程的工艺水平和沟槽的方向等,会对热管的散热造成很大的影响。从生产成本的角度来看,这种热管的制造相对简单,更容易制作,制造成本相对低廉。但是对于热管沟槽的加工工艺要求更高。一般说来,顺着液体回流的方向是最好的设计。由此从理论上来说,不如前者的散热效率高。 3、多重金属网孔多重金属网孔多重金属网孔多重金属网孔 更多更普遍的热管散热器内部使用的是这种多重金属网孔设计。从图中,你不难看出,这热管芯里面的絮状东西,就像是一顶戴糟了的破草帽。一般这种热管内部使用的是一种由铜线制作的金属织物。细小的铜线之间存在许多空隙,但是织物的结

13、构又不会让织物错位阻塞热管。如果你刚刚切开一个热管,你能明显发现,里面的多重金属网会显得非常潮湿。你用手摸到的液体,就是热管内部的回流液体。从成本的角度看,这种热管的内部结构相对简单许多,制作起来也更加简单。仅需一只普通铜管,填充这些多重金属网孔织物即可。从理论上来说散热效果不如前面二者。热管制造 热管的主要部件为管壳、端盖(封头)、吸液芯、腰板(连接密封件)四部分。不同类型的热管对这些零部件有不同的要求。1、管壳热管的管壳大多为金属无缝钢管,根据不同需要可以采用不同材料,如铜、铝、碳钢、不锈钢、合金钢等。管子可以是标准圆形,也可以是异型的,如椭圆形、正方形、矩形、扁平形、波纹管等。管径可以从

14、2mm到200mm,甚至更大。长度可以从几毫米到l00米以上。低温热管换热器的管材在国外大多采用铜、铝作为原料。采用有色金属作管材主要是为了满足与工作液体相容性的要求。2、端盖热管的端盖具有多种结构形式,它与热管舶连接方式也因结构形式而异。端盖外圆尺寸可稍小于管壳内径,配合后,管壳的突出部分可作为氩弧焊的熔焊部分,不必再填焊条,焊口光滑平整质量容易保证。旋压封头是国内外常采用的一种形式,旋压封头是在旋压机上直接旋压而成,这种端盖形式外型美观,强度好、省材省工,是一种良好的端盖形式。3、吸液芯结构吸液芯是热管的一个重要组成部分。吸液芯的结构形式将直接影响到热管和热管换热器的性能。近年来随着热管技

15、术的发展,各国研究者在吸液芯结构和理论研究方面做了大量工作,下面对一些典型的结构作出简略的介绍。4、连接部件因不同环境差别很大,故不作具体介绍。管芯部件一个性能优良的管芯应具有:1 足够大的毛细抽吸压力,或较小的管芯有效孔径;较小的液体流动阻力,即有较高的渗透率;良好的传热特性,即有小的径向热阻;良好的工艺重复性及可靠性,制造简单,价格便宜。管芯的构造型式大致可分为以下几类:1 紧贴管壁的单层及多层网芯此类管芯多层网的网层之间应尽量紧贴,网与管壁之间亦应贴合良好,网层数有l至4层或更多,各层网的目数可相同或不同若网层多,则液体流通截面大,阻力小,但径向热阻大;用细网时毛细抽吸力大但流动阻力亦增

16、加如在近壁因数层用粗孔网,表面一层用细孔网,这样可由表面细孔网提供较大的毛细抽吸压力,通道内的粗孔网使流动阻力较小,但并不能改善径向热胆大的缺点网芯式结构的管芯可得到较高的毛细力和较告的毛细提升高度,但因渗透率较低,液体回流阻力较大,热管的轴向传热能力受到限制此外其径向热阻较大,工艺重复性差又不能适应管道弯曲的情况,故在细长热管中逐渐由其它管芯取代。2 烧结粉末管芯由一定目数的金属粉末烧结在管内壁面而形成与管壁一体的烧结粉末管芯,也有用金属丝网烧结在管内壁面上的管芯此种管芯有较高的毛细抽吸力,并较大地改善了径向热阻,克服了网芯工艺重复性差的缺点,但因其渗透率较差,故轴向传热能力仍较轴向槽道管芯

17、及干道式管芯的小。3 轴向槽道式管芯在管壳内壁开轴向细槽以提供毛细压头及液体回流通道,槽的截面形状可为矩形,梯形,圆形及变截面槽道,槽道式管芯虽然毛细压头较小,但液体流动阻力甚小,因此可达到较高的轴向传热能力,径向热阻较小,工艺重复性良好,可获得精确幼儿何参数,因而可较正确地计算毛细限,此种管子弯曲后性能基本不变。由于其抗重力工作能力极差,不适于倾斜(热端在上)工作。但对于空间的零重力条件则是非常适用的,因此广泛用于空间飞行器。4 组合管芯一般管芯往往不能同时兼顾毛细抽吸力及渗透率,为了有高的毛细抽吸力,就要选用更细的网成金属粉末,但它仍的渗透率较差。组合多层网虽然在这方面有所提高,可是其径向

18、热阻大。组合管芯能兼顾毛细力和渗透率,从而能获得高的轴向传热能力,而且大多数管芯的径向热阻甚小。它基本上把管芯分成两部分,一部分起毛细抽吸作用,另一部分起液体回流通道作用。基本特性热管是依靠自身内部工作液体相变来实现传热的传热元件,具有以下基本特性。1、很高的导热性热管内部主要靠工作液体的汽、液相变传热,热阻很小,因此具有很高的导热能力。与银、铜、铝等金属相比,单位重量的热管可多传递几个数量级的热量。当然,高导热性也是相对而言的,温差总是存在的,不可能违反热力学第二定律,并且热管的传热能力受到各种因素的限制,存在着一些传热极限;热管的轴向导热性很强,径向并无太大的改善(径向热管除外)。2、优良

19、的等温性热管内腔的蒸汽是处于饱和状态,饱和蒸汽的压力决定于饱和温度,饱和蒸汽从蒸发段流向冷凝段所产生的压降很小,根据热力学中的方程式可知,温降亦很小,因而热管具有优良的等温性。3、热流密度可变性热管可以独立改变蒸发段或冷却段的加热面积,即以较小的加热面积输入热量,而以较大的冷却面积输出热量,或者热管可以较大的传热面积输入热量,而以较小的冷却面积输出热量,这样即可以改变热流密度,解决一些其他方法难以解决的传热难题。4、热流方向的可逆性一根水平放置的有芯热管,由于其内部循环动力是毛细力,因此任意一端受热就可作为蒸发段,而另一端向外散热就成为冷凝段。此特点可用于宇宙飞船和人造卫星在空间的温度展平,也

20、可用于先放热后吸热的化学反应器及其他装置。5、热二极管与热开关性能热管可做成热二极管或热开关,所谓热二极管就是只允许热流向一个方向流动,而不允许向相反的方向流动;热开关则是当热源温度高于某一温度时,热管开始工作,当热源温度低于这一温度时,热管就不传热。6、恒温特性(可控热管)普通热管的各部分热阻基本上不随加热量的变化而变,因此当加热量变化时,热管各部分的温度亦随之变化。但人们发展了另一种热管可变导热管,使得冷凝段的热阻随加热量的增加而降低、随加热量的减少而增加,这样可使热管在加热量大幅度变化的情况下,蒸汽温度变化极小,实现温度的控制,这就是热管的恒温特性。7、环境的适应性热管的形状可随热源和冷

21、源的条件而变化,热管可做成电机的转轴、燃气轮机的叶片、钻头、手术刀等等,热管也可做成分离式的,以适应长距离或冲热流体不能混合的情况下的换热;热管既可以用于地面(重力场),也可用于空间(无重力场)。 上图表示了热管管内汽-液交界面形状,蒸气质量流量,压力以及管壁温度 T w 和管内蒸气温度 T v 沿管长的变化趋势.沿整个热管长度,汽-液交界处的汽相与液相之间的静压差都与该处的局部毛细压差相平衡。 Pc (毛细压头是热管内部工作液体循环的推动力,用来克服蒸汽从蒸发段流向冷凝段的压力降 Pv,冷凝液体从冷凝段流回蒸发段的压力降Pl和重力场对液体流动的压力降(Pg可以是正值,是负值或为 零,视热管在

22、重力场中的位置而定)。因此, Pc Pl + P v + Pg是热管正常工作的必要备件。由于热管的用途、种类和型式较多,再加上热管在结构、材质和工作液体等方面各有不同之处,故而对热管的分类也很多,常用的分类方法有以下几种:按照热管管内工作温度区分热管可分为低温热管(2730)、常温热管(0250)、中温热管250450)、高温热管(450一1000)等。(2)按照工作液体回流动力区分热管可分为有芯热管、两相闭式热虹吸管(又称重力热管)、重力辅助热管、旋转热管、电流体动力热管、磁流体动力热管、渗透热管等等。按管壳与工作液体的组合方式划分(这是一种习惯的划分方法)可分为铜水热管、碳钢。水热管、铜钢

23、复合水热管、铝丙酮热管、碳钢荣热管、不锈钢钠热管等等。按结构形式区分可分为普通热管、分离式热管、毛纫泵回路热管、微型热管、平板热管、径向热管等。按热管的功用划分可分为传输热量的热管、热二极管、热开关、热控制用热管、仿真热管、制冷热管等等。影响热管寿命的因素很多,归结起来,造成效管不相容的主要形式有以下三方面,即:产生不凝性气体;工作液体热物性恶化;管壳材料的腐蚀、溶解。产生不凝性气体由于工作液体与管完材料发生化学反应或电化学反应,产生不凝性气体,在热管工作时,该气体被蒸汽流吹扫到冲凝段聚集起来形成气塞,从而使有效冷凝面积减小,热阻增大,传热性能恶化,传热能力降低甚至失效。工作液体物性恶化有机工

24、作介质在一定温度下,会逐渐发生分解,这主要是由于有机工作液体的性质不稳定,或与壳体材料发生化学反应,使工作介质改变其物理性能,如甲苯、烷、烃类等有机工作液体易发生该类不相容现象。管壳材料的腐蚀、溶解工作液体在管壳内连续流动,同时存在着温差、杂质等因素,使管壳材料发生溶解和腐蚀,流动阻力增大,使热管传热性能降低。当管壳被腐蚀后,引起强度下降,甚至引起管壳的腐蚀穿孔,使热管完全失效。这类现象常发生在碱金属高温热管中。热管散热的应用特点1、整体式换热器特点:(1)、传热效率高,热管的冷、热侧均可根据需要采用高频焊翅片强化传热,弥补一般气气换热器换热系数低的弱点。(2)、有效地避免冷、热流体的串流,每

25、根热管都是相对独立的密闭单元,冷、热流体都在管外流动,并由中间密封板严密的将冷、热流体隔开。(3)、有效的防止露点腐蚀,通过调整热管根数或调整热管冷热侧的传热面积比,使热管壁温提高到露点温度以上。(4)、有效的防止积灰,换热器设计可采用变截面结构,保证流体进出口等流速流动,达到自清灰的目的。(5)、无任何转动部件,没有附加动力消耗,不需要经常更换元件,即使有部分元件损坏,也不影响正常生产。(6)、单根热管的损坏不影响其它的热管,同时对整体换热效果的影响也可忽略不计。2、分离式热管换热器的特点:(1)、装置的受热段和放热段可视现场情况而分开布置,可实现远距离传热,这就给工艺设计带来了较大的灵活性

26、,也给装置的大型化、热能的综合利用以及热能利用系统的优化创造了良好的条件。(2)、工作介质的循环是依靠冷凝液的位差和密度差的作用,不需要外加动力,无机械运行部件,增加了设备的可靠性,也极大地减少了运营费用。(3)、放热段与受热段彼此独立,易于实现流体分割、密封、因而能适用于易燃易爆等危险性流体的换热,并且也可实现一种流体与多种流体的同时换热。(4)、受热段与放热段管束可根据冷、热流体的性能及工艺要求选择不同的结构参数和材质,从而可有效地解决设备的露点腐蚀和积灰问题。(5)、根据工艺要求,可以将流体顺、逆流混合布置,以适应较宽的温度范围。(6)、系统换热元件由多片热管管束组成,各片之间相互独立,

27、因此,其中一片甚至几片损坏或失效不会影响整个系统的安全运行。热管原理热管构造热管制作 热管技术是1963年美国LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决,开

28、辟了散热行业新天地。 从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。从热传递的三种方式:辐射、对流、传导,其中热传导最快。热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。一般热管由管壳、吸液芯和端盖组成。热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。管壁有吸液芯,其由毛细多孔材料构成。热管一段为蒸发端,另外一段为冷凝端,当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回

29、蒸发段,如此循环不止,热量由热管一端传至另外一端。这种循环是快速进行的,热量可以被源源不断地传导开来。 3 热管技术的应用与发展热管是美国通用发电机工程师gaugler 早在1942年就提出的理论,并且在1944年取得了专利。但是直到1963年,科学家george m.grover第一个发明并且成功地制造出了热管,热管才普遍地受到人们的重视,逐渐成为一种提高传热效率的元件。在上个世纪70年代后,热管才由理论阶段进入应用阶段,但由于技术的不成熟以及高昂的成本,当时使用范围仅仅限制在航天、核电等高端技术领域。当时在太空中运行的航天器由于其面向太阳和背向太阳的部件温差太大,导致其无法正常工作且容易损

30、坏,利用热管技术使其达到热平衡良好地解决了这个问题。进入80年代后,随着技术的不断完善,以及成本的降低,热管技术开始广泛的进入大专院校、科研院所、民用工业、大型工业设备以及生产上。在大专院校、科研院所的电力电子产品和技术的研发过程中,散热设计是其要解决的核心技术之一,采用热管散热技术既可避免风冷散热的降温效果有限,噪音大,风扇使用寿命短的缺点。又可避免水冷散热体积大、安装和维护不方便,容易滴漏、安全性不高,价格相对较高的缺点。 可以大大缩短产品研发周期、节约设备投资、降低研发经费,提高产品的性能和科技含量。又如在高原地带铺设石油管道或铁路,使用热管可以防止冻土层被破坏。利用热管组成换热器来回收工业生产中的废热可节约大量的能源。在电力电子行业,因为热管自冷散热系统无需风扇、没有噪音、免维修、安全可靠、使用寿命长,热管风冷甚至自冷可以取代水冷系统,节约水资源和相关的辅助设备投资。此外,热管散热还能将发热件集中,甚至密封,而将散热部分移

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1