ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:23.33KB ,
资源ID:27129019      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/27129019.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(心律失常与受体相关研究.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

心律失常与受体相关研究.docx

1、心律失常与受体相关研究心律失常与受体相关研究 受体研究已有40余年,由于心脏存在多种受体,各种受体有其自身的信号通路,且受体间又存在交叉作用(cross-talk),故受体及其信号通路研究仍是心血管疾病领域的重要方向。 心脏病变时,心内神经递质系统,尤其是肾上腺素能受体通路有不同程度的损害。心力衰竭时受体功能异常是致心律失常以及心功能损害的重要中介因素。受体通过调节各种离子通道(Na+、Ca2+、K+、Cl-通道)改变细胞内外离子浓度,影响细胞电活动,易致传导性改变或产生后除极而诱发各种心律失常。利用遗传性猝死狗模型证实了室性心律失常发生的机制为浦肯野纤维早期后除极诱发的触发活动1。 现就目前

2、涉及心律失常与受体、心律失常遗传基础及传导系统有关研究作一概述。 一、肾上腺素能受体 1.肾上腺素能受体(受体)在传导系统的分布窦房结、心房内、房室结、希氏束和心室内传导系统均有1、2受体分布。窦房结内1、2受体均高于周围心房肌,房室结内2受体最高。希氏束1受体最低,希氏束、房室间隔2受体最低。另外传导系统各部位1、2受体密度不一致。窦房结与心房内均以1受体为主,但窦房结中2受体为心房的倍,与窦房结特殊的生理功能相一致2。希氏束内2受体比例最高,占(726)%,房室结为(513)%,房室间隔均为(361)%。心室肌与冠状动脉相比,其受体与G蛋白耦联更牢固3,可能与心室肌以1肾上腺素能受体为主而

3、冠状动脉以2受体为主的亚型分布差异有关。 关于年龄对344只Fisher大鼠受体影响的研究发现,随年龄增长,房室结受体密度下降,但受体亲合力及亚型比率不变;而在左右心室,受体的密度和亚型比率均无改变4。心力衰竭患者有1受体下调,这种现象在心力衰竭早期就出现,且与心力衰竭的严重程度呈正相关;2受体数目不变但功能下降,可能与抑制性G蛋白(G-proteininhibit)功能增强有关。1、2受体数目及比例在扩张型心肌病(DCM)、缺血性心肌病(ICM)心脏传导系统中差别不明显5。在经手术去除交感和副交感神经的动物模型中发现,受体呈持续性上调,而M受体却不受影响6。 2.肾上腺素能受体在心律失常中的

4、意义正常心肌细胞受体激动不会产生异常电活动。当心脏病变,尤其在心力衰竭、心肌缺血、心肌梗塞时受体通路受损,诱发心律失常7。急性心肌缺血时,缺血区域局部儿茶酚胺(CA)浓度较血浆CA浓度高数倍,刺激传入和传出性自主神经,使得功能性耦联的受体数目以及1肾上腺素能受体反应性增加。浦肯野纤维上受体可调节其传导性,此由Na+通道激活介导。心力衰竭时1受体下调而2受体不变,提示2受体可能在心力衰竭致心律失常中意义更大。众多临床研究发现并非所有的受体阻滞剂对心肌梗塞后心律失常起相同的保护作用。非选择性受体阻滞剂对交感神经末梢肾上腺素释放比选择性受体阻滞剂有更好的阻断作用8。同时完全阻断1和2受体较选择性阻断

5、1受体有更好的抗心律失常作用。这说明2受体在急性心肌梗塞诱发的严重室性心律失常中具重要意义。推测机制可能是2受体激活L-型Ca2+通道,或由细胞膜上离子交换提高细胞内Ca2+浓度,造成膜电位波动,诱发室性心动过速(室速)或心室颤动(室颤)。以上作用非cAMP依赖,可能是G蛋白与离子通道直接作用的结果9。 某些室上性心律失常的发生可能与冠状动脉上的受体密切相关。如病态窦房结综合征,病理生理改变包括冠状动脉痉挛、冠状动脉微循环损伤和交感神经功能不全,这些很可能由于冠状动脉上受体功能下降所致10。受体通路可开放IKATP(ATP敏感性K+通道),导致细胞膜过度极化,Ca2+内流增加,进一步刺激一氧化

6、氮(NO)合成11,最终扩张冠状动脉。冠状动脉搭桥术后发生窦房结和房室结动脉阻塞的患者更易发生心房颤动(房颤),这也可能与冠状动脉上交感神经系统受体功能下降,造成冠状动脉功能不全有关12。 3.肾上腺素能受体与其它类型受体间的相互影响受体与腺苷功能密切相关。心肌缺血时局部去甲肾上腺素(NE)释放,促使腺苷合成;阻断受体可减少心脏腺苷合成和释放。这可能因为受体阻断后,ATP消耗减少,高能磷酸化合物浓度升高13。过去普遍认为腺苷通过A1(腺苷受体-型)抑制腺苷酸环化酶,保护心室肌。但在长时间室颤时,外源性CA可降低除颤阈值(DFT),同时由于缺氧造成的腺苷含量增加通过拮抗肾上腺素能通路而提高DFT

7、,从而不利于室颤的治疗14。与年龄相关性受体功能下降相似,随年龄增长A受体(腺苷受体)也下调,尤其是特异性A1受体介导的抑制性信号通路的功能也降低,作用环节可能在腺苷/受体或受体/G蛋白水平15。 血管紧张素(angiotensin,Ang-II)作用于AT1(Ang-II受体-I型)受体,激活蛋白激酶C(PKc),降低大鼠心脏1受体的刺激作用。这种Ang-介导的PKc活化可能与弗波酯(phorbolester)介导的PKc活化有所不同。在动静脉瘘动物模型中,假手术组以AT1亚型为主,而手术组以AT2亚型为主。应用受体阻滞剂后,AT受体亚群分布部分逆转回至AT1。这一现象在说明AT2在容量负荷

8、造成的心脏扩大中起一定作用的同时,也揭示了受体与AT受体之间存在功能上的相互作用16。 4.抗肾上腺素能受体自身抗体在心律失常中的意义交感神经在调节心脏自律性方面起重要作用。转基因小鼠心房过度表达1肾上腺素能受体可致心率变异性(HRV)减少,心律失常发生率增加17。 过去对于抗肾上腺素能受体抗体(抗抗体)的研究多集中在心肌病上,认为心肌病发病与自体免疫异常有关,血清中出现高滴度的抗1抗体。晚近在研究各种原发性电活动异常患者时发现原发性室性心律失常血清抗抗体阳性率%(11/21),显著高于正常对照组%(15/101)。传导阻滞组%(5/14)也明显高于正常对照组。但室性心律失常中具备两种受体的抗

9、体,而传导阻滞患者血清中只有抗1抗体阳性的趋势。房性心律失常患者血清中抗1、2抗体无显著升高18。Paci用放射性配基结合抑制分析法检测扩张型心肌病(DCM)患者,结果发现在DCM患者中伴有复杂性室性心律失常(CVA)者,血清中抗抗体阳性率30%,远高于不伴CVA者(5%)和正常人(0%),从而推论DCM患者血清中抗体的出现与CVA的发生密切相关而与心室功能不全程度无关。同时也提示了抗抗体与室性心律失常的关系可能较其与心肌病本身更为相关更为直接19。 肾上腺素能受体自身抗体在正常人体内有低水平存在,起自体调节受体的作用,但异常的自体免疫过程产生高滴度抗体将会导致一系列受体后跨膜信号传递过程的改

10、变。关于抗抗体在心律失常发病机制中的研究目前多局限于回顾性研究,进一步确定抗抗体存在是心律失常发病的启动因素之一,还需做大量的前瞻性研究。另外高水平抗抗体的存在也提示, 在临床上是否可以采取清除血清抗体的方法,作为心律失常患者的辅助治疗手段。 二、肾上腺素能受体与心律失常 人类心脏存在肾上腺素能受体(受体)家族,1有A、B、C、D4种亚型。目前已证实犬浦肯野纤维上存在2受体20,但似乎人类心肌内没有2受体。所以对受体与心律失常相关研究集中于1受体。 受体通路由磷脂酶C(PLC)激活分解磷酸肌醇二磷酸(PIP2)生成三磷酸肌醇(IP3)、二酰甘油(DAG),最终调节Ca2+、Na+、K+浓度而产

11、生细胞电活动的异常。这一过程是Ca2+依赖性的。在犬心肌梗塞后诱发室颤模型中,给予受体阻滞剂可预防室颤发生。由此可见,1受体特别是1A亚型在严重心律失常中起重要作用21。刺激1受体可加重离体大鼠心脏缺血再灌注心律失常,可能由于缺血时局部交感神末稍释放内源性CA,激活1A受体,通过增加Na+-H+交换,造成细胞内Na+浓度升高,Ca2+超负荷,易发生后除极和触发活动所致22。另外细胞内高Ca2+可激活钙敏感性K+通道(IKCa),加重缺血时心律失常的发生。但也有人报道应用1A阻滞剂却未能明显降低再灌注心律失常的发生23,如何解释这一矛盾,尚需进一步研究。1受体可抑制IK、Ito,延长浦肯野纤维动

12、作电位复极化时间,有利于早期后除极诱发室性心律失常。犬浦肯野纤维与心内膜肌纤维对CA反应性存在差异,来源于1受体相对密度差异,并且由此产生两种组织连接处细胞电活动的不一致将有助于诱发心律失常24。 近年来,人们对Cl 电流给予了极大的重视。豚鼠心室肌细胞存在cAMP激活的Cl 电流(IClcAMP),它可使膜除极化,缩短APD(动作电位时限),导致心律失常,受体激动剂可抑制这种肾上腺素能受体激活的Cl 电流25。但目前尚未发现人心肌细胞中存在Cl 电流。 三、传导系统分离技术研究 传导系统分离技术的探索,将有助于了解传导系统各部分细胞的组织化学和电生理特性,为心律失常发病机制的研究提供了有力的

13、手段。 单个窦房结细胞的分离多取材于兔和豚鼠的心脏26。在离体心脏灌流、胶原酶酶解的基础上,剪下窦房结区域,继续酶解消化,最终分散成单个细胞。典型的窦房结细胞在显微镜下呈长梭形,长约5080m,宽1015m,横纹较淡,有一个明显的核居于胞浆中央区27。 浦肯野纤维的分离有多种方法,例如在4Kreb溶液中将离体心脏打开,从左室取一窄条附有浦肯野纤维的肌段(宽约23mm,平均横切面积mm2),将游离的纤维末梢继续灌注悬浮,最终得到单个浦肯野纤维细胞28。 以上传统的细胞分离方法均较繁琐,且多用于膜片钳技术记录单个细胞离子流的变化,故应用受限。Song等29创立了一种改良技术,根据传导系统解剖学定位

14、特点,沿心脏长轴分离出整个传导系统。此法具有操作简便,可观察到传导系统两个相邻部位之间的过渡组织,以及能与其他多种实验目的相配合的优点。 四、心律失常的遗传学基础 美国每年有350000人死于心脏性猝死,然而至今遗传性心律失常的分子细胞学机制仍是个谜,部分研究已将某些心律失常相关基因在染色体上定位。 长QT综合征(LQT)是一种遗传性疾病。近年来逐步认识到LQT起源于编码心肌细胞离子通道蛋白基因的突变。4个LQT基因已被证实,亦不排除其它基因位点的存在30。LQT3基因SCN5A位于3号染色体,编码心肌Na+通道,SCN5A通道基因突变引起通道功能增强(gain-of-channelfunct

15、ion)。LQT2基因HERG编码Ik通道alpha亚单位,位于7号染色体。HERG钾通道基因突变可造成通道功能下降。11号染色体上KVLQT1编码蛋白质的生理特性尚不清楚,但从其互补DNA序列分析中提示这一蛋白质可能是一种新型K+通道31。LQT4基因位于4q25-7,部分患者伴有面肩胛肱部肌营养不良(facioscapulohumeralmusculardystrophy,FSHD),且FSHD基因位于4q35-ter,推测两者可能有一定关系。 家族性DCM中有一种特殊类型传导系统紊乱性扩张型心肌病(CDDC),其家族成员在2030岁之间表现出明显的心律失常和房室阻滞。对俄亥俄州(Ohio

16、)一家族进行连锁分析,发现CDDC基因位于1号染色体中心区(1p1-1q1)。最初连接蛋白connexin40(缝隙连接的蛋白成份)基因被认为是CDDC的代表基因,但未得到进一步证实。最近Mark等32(1996)对一个瑞士-德国家族的连锁分析结果,将基因定位于3号染色体短臂上(3P22-P25),具体代表基因产物不知。 另外对家族性房颤的基因分析,也发现其与染色体上某一位点变异密切相关33。以上资料表明遗传在心律失常中占重要地位。大量人群调查,尤其是家族基因连锁分析,将有助于从基因水平揭示心律失常的发病机制。 五、房颤的离子、受体研究 房颤是最常见的慢性心律失常,西方60岁以上的人群有2%4

17、%的患者有房颤。房颤的电生理特点为有效不应期和动作电位时限缩短,不应期离散度增加,但对房颤发生的细胞学机制了解很少。目前研究多集中在房颤时离子电流的异常上。有关研究表明,慢性房颤患者心房动作电位时限和有效不应期的缩短是由于外向K+电流减弱所致,且与特异性心房K+电流密度的改变相关。Ik亚单位蛋白有和两种类型,慢性房颤时密度不变,而明显减少,且与Ik密度下降相一致,说明是人心房肌细胞中Ik的主要成份34。另外慢性房颤患者,IkAch(Ach激活的外向钾电流)、L-型Ca2+通道、ICa的mRNA显著下降,降低程度与房颤病程呈正相关。 心房肌内M受体含量丰富,迷走神经兴奋后释放Ach作用于M受体,

18、通过G蛋白激活的外向K+电流,可使细胞膜过度极化,动作电位时限缩短。由于迷走神经末梢在心房中的离散性分布,迷走兴奋时,IkAch的激化程度在空间上亦非均一,从而造成各部分电活动不一致,有效不应期离散度增加,易化折返形成,诱发房颤。肾上腺素能受体通路对IkAch、L型Ca2+通道均有激活作用,故在房颤发生中可能有意义。在对多种离子通道调控的研究中发现一特殊现象,M2、2肾上腺素能受体对离子通道均为正调节,但在房颤中这些离子通道密度显著减少,是否离子通道也与受体一样,对受体后径路的刺激产生下调反应还有待进一步探索。 在对多种心律失常患者抗抗体研究中,房性心律失常似与抗抗体相关性不大,可能由于心房肌

19、中M2受体在细胞自律性调控中占优势所致,故可考虑研究一下房性心律失常尤其房颤患者是否存在高水平的抗M2抗体。 AT受体在房颤发病中意义不甚明了。已有研究发现慢性房颤患者A TI受体mRNA显著降低,可能与房颤后心房功能不全有关。但Ang也具有离子通道调节作用。如Ang-可激活心脏受体而影响Na+通道,增加细胞膜上Na+通道的开放概率、激活与失活速率。Ang-增强Ca2+通道作用是通过受体与通道的直接作用。以上均表明Ang-II可能会在心律失常发病中起一定作用,但AT受体究竟是否有影响,以及其作用环节仍值得探讨。 参考文献 1GilmourRF,Moiseactivityasamechanism

20、forinheritedventriculararrhythmiasingermanshepherdAmCollCardiol,1996,27:1526-1533. 2张寄南,苏恩本.心力衰竭与心肌肾上腺素受体.基础医学与临床,1997,17:20-24. 3CookeL,MuntzinbetaadrenergicreceptoragonistaffinitybetweencardiacmyocytesandcoronaryarteriolesincaninePharmacolExpTher,1994,269:351-357. 4KusumotoFM,LurieKG,DuttonJ,etofa

21、ginginAVnodalandventricularbetaadrenergicreceptorsinthefischer344JPhysiol,1994,266:H1408-1415. 5EngelhardtS,BohmM,BardmannK,etofbeta-adrenergicreceptormRNAlevelsinhumanventricularbiopsyspecimensbyquantitativepolymerasechainreactions:progressivereductionofbeta1-adrenergicreceptormRNAinheartAmCollCard

22、iol,1996,27:146-154. 6ValetteH,DelduzeP,SyrotaA,etmyocardialbeta-adrenergic,muscarinicreceptordensitiesafterdenervation:aPETNuclMed,1995,36:140-146. 7MerletP,CaussinC,PoiseauE,etvivoassessmentofneurotransmittersystemincardiovasculardiseases,clinicalNuclMed,1996,40:108-120. 8NewtonGE,Parkereffectsof1

23、-selectiveandnonselective-adrenergicreceptorblockadeandcardiacsympatheticactivityincongestiveheart,1996,94:353-358. 9orgeE,LourdesC,JamesH,etal.2-adrenergicreceptorantagonistsprotectagainstventricular,1997,96:1914-1922. 10MatsumuraK,NakaseE,SaitoT,etofmyocardialperfusionandcardiacsympatheticnervedys

24、functioninpatientswithsicksinussyndromeevaluationofcoronaryhemodynamicsand201TlCl/123I-MIBGmyocardialIgaku,1994,31:1321-1328. 11ZhiM,RobertP,MichelL.2-adrenergicdilationofresistancecoronaryvesselsinvolvesKATP&n bsp;channelandnitricoxideinconscious,1997,95:1568-1576. 12KolvekarS,D SouzaA,AkhatarP,eto

25、fatrialischemiaindevelopmentofatrialfibrillationfollowingcoronaryarterybypassJCardiothoracSurg,1997,11:70-75. 13GormanMW,HeMX,Sparksformationduringhypoxiainisolatedhearts:effectofadrenergicMolCellCardiol,1994,26:1613-1623. 14BruceB,Ericadeterminantsofdefibrillation:roleofadenosine.Circulation,1995,9

26、1:838-844. 15GaoE,SyderDL,JohnsonMD,eteffectofageonadenosineAlreceptorfunctionintheratMolCellCardiol,1997,29:593-602. 16PooleTD,HolderMS,GipsonangiotensinIIreceptorpopulationsduringaortocavalfistulae,AIIandbetaadrenergicreceptorBiophysResCommun,1994,203:1865-1874. 17Mansierheartratevariabilityintran

27、sgenicmiceoverexpressingatriallJPhysiol,1996,271:H1465-1472. 18PabloA,RosenbaumCM,ElizariM,etprevalenceofantibodiesangainstbeta1-andbeta2-adrenoceptorsinpatientswithprimaryelectricalcardiacAmCollCardiol,1995,26:864-869. 19PaciA,DaniloN,GiulianoC,et-receptorantibodiesindilatedcardiomyopathy:relations

28、hipwithventriculardysfunctionandarrhythmias(abstract).Circulation,1993,88:I-460. 20LeeHC,SamsonRA,CaireceptorbindingincaninePurkinjeLett,1996,380:-43. 21Billmanofalpha1-adrenergicreceptorantagonistsonsusceptibilitytomalignantarrhythmias:protectionfromventricularCardiovascPharmacol,1994,24:4-402. 22M

29、asahiroY,Metinofreperfusionarrhythmiasbyl-adrenergicstimulation:apotentialroleforreceptormediatedactivationofsarcolemmalsodium-hydrogenRes,1995,29:222-230. 23MasahiroY,Metinofselectivelaadrenoceptorantagonistsonreperfusionarrhyth miasinisolatedratCellBiochem,1995,147:173-180. 24TurnerLA,VodanovicS,B

30、osnjakofanestheticsandcatecholaminesonconductioninthecanineHis-PurkinjePharmacol,1994,31:167-184. 25HooolLC,OleksaLM,HarveyofGproteinsinalpha1-adrenergicinhibitionofthebetaadrenergicallyactivatedchloridecurrentincardiacPharmacol,1997,51:853. 26QiAD,KwanbyextracellularATPofL-typecalciumchannelsinguineapigsinglesinoatrialnodalJPharmacol,1996,119:1454-1462. 27HiroyukiI,KyoichiO,Akinoricondu

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1