ImageVerifierCode 换一换
格式:DOCX , 页数:33 ,大小:317.32KB ,
资源ID:27095095      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/27095095.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(MF设备远程监控与运行管理系统说明书.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

MF设备远程监控与运行管理系统说明书.docx

1、MF设备远程监控与运行管理系统说明书 文件排版存档编号:UYTR-OUPT28-KBNTL98-UYNN208MF设备远程监控与运行管理系统说明书MF3000设备远程监控与运行管理系统说明书中国华电南京农网城网工程有限公司2008 年 07月 08日一、公司简介企业简介中国华电南京农网城网工程有限公司依托华电集团总公司的雄厚实力和国电南京自动化股份有限公司的技术优势,在中低压变电站综合自动化系统,发电厂、厂用系统保护,电力故障录波系统,自动准同期装置,高频开关直流电源系统等方面进行技术研究、产品开发、工程技术,并进行相关的技术咨询和技术服务。公司被国家经贸委推荐为第一批全国城乡电网建设与改造所

2、须设备产品及生产企业。(国经贸电力1988844号)公司具备强大的研发团队,与着名高校东南大学电气工程学院深度合作,以国际领先的技术和理念,开发出MF系列设备远程监控与运行管理系统及旋转设备故障综合在线检测仪,填补了国内空白。产品广泛应用于电力、煤炭、化工,钢铁,水泥等系统的各类异步电机上,深受用户的好评。公司始终贯彻“诚信为本,客户至上,坚持创新,追求卓越”的价值理念。经过多年的发展积累,公司拥有一支高水平,资深的电力自动化技术人才队伍,结合着名高等学府先进的理论及强大的研发能力,竭诚为广大用户提供优质的产品和服务。二、设备状态监测概述当今企业追求效益最大化面临巨大的压力,在影响企业效益的关

3、键环节中,对企业关键资产设备优化运行和合理的维护决策以实现资产效益最大化, 显得尤其重要且较易实现,集成的状态监测应用信息化解决方案使这一目标变成现实。作为企业ERP/EAM体系中重要的控制环节,状态监测技术是综合了传感技术、机械、振动、电气、信息网络、模糊理论等多项技术,建立设备的运行状态数据仓,进行复杂的状态监测与故障诊断,达到可靠性维护与状态检修的目的。推行状态检修的直接效益有:节省大量维修费用;提高企业可用系数;延长设备使用寿命;增加企业生产能力;确保设备运行可靠性;降低检修成本、减少检修风险。三、MF3000系统系统简介1)设计原则 高可靠性 先进性 集成性 智能性 开放、扩充性 方

4、便易用性 标准化 安全性2)总体特点 嵌入式Linux体系的多CPU智能数据采集器,全功能数据预处理功能 。 功能强大、完整的数据存储与多极管理 数据冗余技术,安全可靠的数据备份与自恢复 基于Struts架构的J2EE模式, Java开放式编程语言 中心服务器端采用LinuxOracl /Windows ServerSQL Server,Weblogic层级数据连接 通过MODBUS协议与DCS、PLC通讯 ,通过以太网技术实现与ERP/EAM连接。 基于HTTP协议的3层应用结构 远程全功能浏览与专家故障诊断功能 远程参数设置与组态、远程更新功能3)系统拓扑图4)数据采集子系统 采集、传送并

5、处理各种振动、位移、键相及过程量、开关量等数 据 ,信号来源: 现场一次原件4-20mA/1-5V的标准信号 现场智能仪表通讯方式 嵌入式Linux、多CPU功能板,6/12/18CH板7块板组合能力,最高支持7个转速段 专用集成电路技术(ASIC)及数字信号处理(DSP),完善的数据预处理能力 16位A/D,最高采样频率达500kHz 远程工作状态设置 对于已有以485方式通讯的仪表采用并联的方式,连接到协议转换模块接入到局域网; 对于使用420mA信号传输数据的信号, 通过远程I/O模块接入到局域网5)在线监测子系统 通过监测局域网将数据采集器传送给网络服务器的数据包进行实时处理,监测各机

6、组工作状态和运行趋势等,并将有关数据进行存贮和分类分级管理。 处理速度快 通用性好 操作方便 数据“黑匣子”功能 数据保存完善 6)数据存储与管理子系统 数据管理 历史数据管理 开、停机数据 一级正常数据(通频值、特征分量值、进动分量值等) 二级正常数据(同上) 三级正常数据(同上) 报警数据(绝对报警、梯度报警、进动分量梯度报警、位置报警和矢量区域报警) 危险数据(同报警数据) 趋势数据管理 监测报告数据管理7)数据分析与专家诊断子系统 以矢谱分析技术为核心的数据融合分析方法 强大的稳态与非平稳过程分析方法,分析功能30余种 人工神经网络+规则 +模糊理论 考虑机组整个系统的动力学特性 支持

7、小样本、向量机技术 故障征兆自动识别技术 系统集成子系统 基于Browser/Server的N层分管式结构模式,浏览器端无需安装任何专用软件。 Linux网络 ,便于该系统ERP/EAM系统互联,达到数据传输、资源共享的目的。 Oracle大型数据库管理系统 远程浏览、诊断功能,远程实现更改参数、组态与系统升级 支持OPC技术系统软件 基于J2EE体系Java编程,与操作系统无关 模块化组态功能 按照软件开发规范进行编制案例:MF3000汽轮发电机组振动在线监测系统(一). 概述 本文件遵循标准及规范 TDM技术规范 机器状态监测与诊断 GB/T 138241992对振动烈度测量仪的要求 GB

8、/T6075在非旋转部件上测量与评价机器的机械振动(idt ISOTC10816) 目标针对发电机组实施在线状态监测与故障诊断技术,建立企业关键机组远程监控与运行管理平台。建立关键机组状态数据库,监测故障的产生、发展和变化的全过程,预测运行趋势和故障的分析诊断,旨在掌握机组的本质运行状态,保障这些关键机组实现安全、稳定、长周期优化运行,实现预知维修或状态维修。通过培训及服务帮助企业提高状态监测专业技术水平,组建企业设备故障诊断中心,进行机组运行状态评估和提出故障治理和维修建议,满足企业设备资产效益管理的需求。汽轮发电机组设备状态监测和故障诊断的特点在反映设备状态的信号中,应用最为广泛的是振动信

9、号。振动是引起设备故障的主要原因,设备的各种故障一般在振动信号上有所反映,振动信号包含着各种丰富的信息,而对振动进行测量一般不会影响设备的正常工作,十分方便。安装机械设备振动监测故障诊断系统的必要性和意义性主要表现在以下方面: 通过数据记录和信号分析,在事故发生后为事故分析提供有力的证据,能减少判断故障的时间,减少事故停机造成的损失。记录数据必须保证其准确性,鉴于滑动轴承相对振动测量,本系统运用双通道信息融合技术,即矢谱分析技术对振动数据进行具有针对性的分析处理。 许多故障的发生都有一个由轻到重的发展过程。通过趋势分析和对异常信号的检测,能够早期发现设备潜在的故障,及时采取预防措施,避免事故的

10、发生,延长设备寿命周期,提高设备利用率。系统在检测机组运行状态趋势方面,采用了相关趋势检测技术,可以直观地区别出导致机器振动超标的原因和部件。 通过对设备的状态分析,可以确定合理的检修时机和检修方案,能够促进维修制度从事故维修、定期维修向视情维修的转变,避免不必要的停机,并能通过提高修复速度减少停机时间,节约维修费用,具有很高的经济效益。 故障诊断专家系统的应用能够解决现场专家不足的问题,能够充分利用领域专家的丰富经验,使故障诊断的整体水平有所提高,从而创造巨大的社会效益和经济效益。(二). 系统设计思路汽轮发电机组主要承力部件是滑动轴承及转子,驱动机与工作机之间的通过联轴器连接,因此,滑动轴

11、承、转子系统和联轴器在承受负荷状态下的真正状态是监测诊断的主要关注点。对于滑动轴承的故障诊断,本系统采用了经验证具有较高针对性的相关频率滤波预处理技术,结合矢谱分析和其它分析,可有效地解决滑动轴承、转子的故障检测问题。在振动报警方面,依照新版振动标准规定,除考虑绝对值报警外,增加梯度报警功能,即当同一工作状态下振动变化率超过25%时,也作为一个报警条件使用。系统的总体设计原则是: 高可靠性可靠性除包含系统所设计的硬件外,软件的可靠性、稳定性、网络系统抗病毒攻击能力均成为系统可靠性指标的组成部分。系统在以下诸方面体现上述可靠性指标:高可靠数据采集前端 MF3000系统()的数据采集器是第三代智能

12、型主动数据采集系统,采用高可靠性和稳定性的嵌入式Linux体系,结合多CPU结构和DSP技术,构成全功能数据采集系统,其中包括先进的数字矢量滤波技术;每采集模块具备独立的32位CPU,可实现真正意义上的并行处理能力。高可靠网络体系 针对网络普遍存在的安全性问题,服务器网络支撑系统采用Linux网络平台,数据库采用MySQL关系数据库,系统整体架构采用符合网络数据传输要求的浏览器/服务器(B/S)结构,并采取了多种安全措施和冗余设计,不但保障系统高速运行,也便于随着对系统功能要求的不断提高而进行的功能扩展。采用Linux作为网络支撑系统并不影响与其它诸如WINDOWS 2000 Server或W

13、indows NT等作为网络支撑系统的网络互联,对于抗病毒攻击和TCP/IP通讯具有比Windows系统更优良的性能。高可靠信号分析体系 信号分析方法全面,覆盖面广,具有较强的针对性。对于不同的振动传感器获取的信号特点,进行了有针对性的信号预处理,使得信号分析结果更直观、易读,可满足不同层次人员的需求。鉴于大多故障发生时信号表现为非平稳,可以增加非平稳过程分析方法和部分现代信号分析方法(如二代小波等)。 高可靠信号预处理 对部分耦合通道较多、信号结构复杂且信噪比低的信号,将采用先进的相关振动滤波技术对信号进行预处理,获得信噪比较高的早期故障信息。 方便实用性功能浏览方便 采用全B/S结构,友善

14、的人机接口、联机帮助系统,使操作非常简单方便。工作状态变更方便 各种参数可通过系统提供的组态软件进行在线调整,由于 Linux系统具备的TCP/IP通讯协议功能优于Windows系统,可方便地实现数据采集器的远程工作状态变更及功能升级。数据查询管理方便 在数据量很大的情况下,针对大多设备状态监测系统数据查询方式不直观、效率低等弊病,系统采用七级追忆高效存贮技术,用户选择数据更直观、准确、快捷。用户端扩展方便 由于系统软件采用了J2EE体系编制,用户端无需任何设置即可成为系统全功能浏览器,且与用户端操作系统无关。 可扩充性监测对象扩充 系统具有良好的扩充性,并保证扩充具有较高的性能价格比。新增加

15、监测机组时仅需增加数据采集器、振动传感器工艺信号变送装置和信号电缆,对于安装距离较近的机组,在采集器框架所容通道许可的条件下,可以通过扩充采集模板的方式进行扩充。系统功能扩展 软件系统采用组态化、模块化设计,所有分析功能均作为一个独立控件模块,便于系统功能扩展和功能升级。系统覆盖范围扩展 系统提供与ERP/EAM系统互联的标准数据接口,便于组成大型企业监测网络和不同应用系统之间的数据传输与共享。技术支持范围扩展 系统具备远程故障诊断技术支持功能(需INTERNET网络支持),通过INTERNET可实现领域外专家的技术支持和远程故障诊断。 人工智能性智能诊断机组常见故障 系统配备了智能故障诊断专

16、家系统,自动诊断16大类机组常见故障(根据机器类型不同有所区别),本系统主要考虑以滚动轴承支撑转子系统的常见故障诊断。智能自学习功能 采用先进的支持向量机技术更新了系统的自学习功能,支持在小样本条件下(甚至是正常数据下)的系统自学习功能,进一步提高了系统故障诊断的准确度。智能综合源数据 系统对于故障诊断推理机构造与一般诊断系统不同。对于滑动轴承支撑的转子系统,一般诊断系统多利用频谱特征(将频率成份分为多个“段”,给予一定的加权值)、轴心轨迹形状、振动稳定性等因素进行模糊识别,由于采用的数据源为一个“点”,且频谱多为单通道频谱(投影谱),导致故障诊断准确率较低。系统综合考虑了振动信号来源位置、数

17、值变化趋势、截面信息融合、源信号分离、唯一性源数据处理等方式进行设备状态的推理,因此可以提高故障诊断的准确性。对于采用电涡流传感器的系统,所有考核数据均为振动矢量,避免了单通道数据(投影数据)受传感器安装位置影响导致数据无唯一性问题。对于采用壳体振动测量的信号,系统采用了相关振动滤波技术获得更直接的故障信息。本系统采用相关滤波技术获取故障特征信息。智能数据采集 采用了全自动智能工作模式设计,具有免维护优点,可智能识别机组运行状态变化并应用相适应的数据采集方式,全部功能均处于全自动运行状态。 数据准确性 采用数字矢量滤波技术获取真实相位信息(需要键相传感器支持)。 采用高位数A/D(16位)提高

18、模数转换精度。 采用截面轴系数据融合技术获取唯一性数据(针对滑动轴承支撑的转子系统)。 采用通频、分频、梯度及状态报警等多维报警,获取机组真实状态变化信息。 采用相关滤波技术提高壳体振动信号的信噪比。 系统拓扑图机组测点分布说明P-01发电机有功功率 P-02发电机无功功率汽轮发电机组系统测点布置图汽轮发电机组测点布置 序号测点编号测点说明测点数量传感器类型1KP键相传感器1从TSI取得2A-01x、A-01y、V-011#瓦3从TSI取得3A-02x、A-02y、V-022#瓦3从TSI取得4A-03x、A-03y、V-033#瓦3从TSI取得5A-04x、A-04y、V-044#瓦3从TS

19、I取得6A-05x、A-05y、V-055#瓦3从TSI取得7A-06x、A-06y、V-066#瓦3从TSI取得8A-07x、A-07y、V-077#瓦3从TSI取得9P-01发电机有功功率1从TSI取得10P-02发电机无功功率1从TSI取得电动给水泵测点布置图电动给水泵测点布置序号测点编号测点说明测点数量传感器类型1B-01x、B-01y电机驱动侧2MLV9200T-B-01-082B-02x、B-02y水泵靠联轴器侧2MLV9200T-B-01-083B-03x、B-03y水泵自由侧2MLV9200T-B-01-08一次风机测点布置图一次风机测点布置序号测点编号测点说明测点数量传感器类

20、型1C-01电机自由侧1MLV9200T-B-01-082C-02电机驱动侧1MLV9200T-B-01-083C-03风机靠联轴器侧1MLV9200T-B-01-084C-04风机自由侧1MLV9200T-B-01-08二次风机测点布置图二次风机测点布置序号测点编号测点说明测点数量传感器类型1D-01电机自由侧1MLV9200T-B-01-082D-02电机驱动侧1MLV9200T-B-01-083D-03风机靠联轴器侧1MLV9200T-B-01-084D-04风机自由侧1MLV9200T-B-01-08引风机测点布置图引风机测点布置序号测点编号测点说明测点数量传感器类型1E-01电机自由

21、侧1MLV9200T-B-01-082E-02电机驱动侧1MLV9200T-B-01-083E-03风机靠联轴器侧1MLV9200T-B-01-084E-04风机自由侧1MLV9200T-B-01-08流化风机测点布置图流化风机测点布置序号测点编号测点说明测点数量传感器类型1F-01x、F-01y电机自由侧2MLV9200T-B-01-082F-02x、F-02y电机驱动侧2MLV9200T-B-01-083F-03x、F-03y风机靠联轴器侧1MLV9200T-B-01-084F-04x、F-04y风机自由侧2MLV9200T-B-01-081.在汽轮发电机组诊断分析方法中加入轴心轨迹和轴心

22、位置。汽轮发电机组转子运行过程中的轴心轨迹形状特征对判别整个转子设备的故障非常重要,其形状是判断转子运行状态和故障的重要依据,其中隐含着系统的各种故障信息,比如仅由不平衡引起的振动,轴心轨迹为椭圆;油膜涡动引起的轴心轨迹为内“8”字形;不对中引起的轴心轨迹为香蕉形或外“8”字形等。对于摩擦问题,向来备受关注。动态波形呈削顶状一直作为评价摩擦的规则,但必须符合一个定期监测无法做到的前提:现在进行时。抓住正在摩擦的数据不容易,摩擦过后振动特性又发生了变化,仍然难以看到“削顶”波形,但摩擦后间隙发生了变化,这在轴中心线位置图上是无法改变的,因此轴中心线位置能提供更直观的摩擦信息。2. 对于风机来说,

23、与新版振动标准相对应的检测参数为振动烈度,即振动速度的有效值,因此选择速度传感器为宜。虽然可以采用加速度传感器进行积分后获得振动速度,但滤波存在的相位延迟好加速度传感器不太好的低频响应均会影响测量的准确度。我公司生产的速度传感器在设计时采用了最少活动部件方案,具有较长的使用寿命,适合用于除尘风机这类转速不很高的机组的状态监测;3. 测点主要分布在滚动轴承座处,考虑到安装条件的限制,以垂直方向为主;4. 速度传感器采用双头螺栓与测点连接,以达到传感器的最高频率响应;5. 选择的传感器为MLV9200T-B-01-08振动速度传感器。其主要技术指标为: 灵敏度:20mV/mm/s 幅值线性误差:

24、频响:1,000Hz(3dB)(国家标准规定频响范围为101000Hz) 温度范围:30120 安装螺纹:M6 直流阻抗: 绝缘电阻: 环境要求:防尘、防潮(湿度)(三). 系统各部分功能简介由于锅炉辅机的主要易损部件是支撑轴承和转子。因此本系统采用了对上述部件具有针对性的监测诊断方案。对于以滚动轴承支撑的机组,其振动信号由于受耦合通道的影响较重,因此导致信噪比较低,虽然传统的分析方法采用了如共振解调、包络等方法以期提高信号的信噪比,但实际使用中并非取得了预期的效果。经过工程验证,证明滚动轴承振动信号是可以获得较高信噪比的。系统将振动信号分为两个不同的频段(并非简单地一分为二,其中有重叠部分)

25、,即转子相关振动和轴承相关振动两个部分,并对振动烈度、转子相关振动烈度和轴承相关振动烈度三个参数进行实时监测、报警,使操作人员能在第一时间内获得机组运行的正确信息。研究表明,采用上述监测可有效地解决壳体振动信号信噪比低的问题。滚动轴承的监测与诊断实践中,其振动信号的信噪比偏低,信号耦合通道多,无法正确区分出所需要的特定信号,一直是广大技术人员和研究人员所诟病的。由于滚动轴承元件的缺陷在运行中出现的低频脉动的频率一般在1kHz以下,因此在工程实际中,直接利用这一频带来诊断滚动轴承的故障并不容易得到理的效果。这主要是低频段的信号易受到噪声的干扰,导致信噪比太低,使有用信号被淹没在背景噪声中的原因所

26、致。国内虽然利用一些新的分析方法来提高滚动轴承诊断的信噪比,如基于混沌振子的滚动轴承故障诊断方法来检测微弱周期信号,直接对特征频率进行检测,充分利用信号低频部分的信息等,但目前实用的方法是相关频率滤波法。 1. 转子振动范围转子相关振动一般发生在1/43倍转子转速频率范围内(1/4X3X),最好采用振动速度或振动位移为计量单位,可以通过对加速度信号进行积分获得。许多滚动轴承故障是转子相关故障直接导致的(如不平衡、不对中或转子失稳)。转子相关故障必须予以修正以减小轴承过载和进一步的损坏。大多通用设备的转速从1200rpm到3600rpm,其转子相关振动信号在10500Hz之间,因此,监测这个范围

27、的频率成分有助于确认轴承什么时候会因转子相关故障导致损坏或轴承是否因转子相关故障导致损坏。没有这个数据,就无法检测到转子相关故障,轴承将会继续损坏,继续需要定期进行更换。需要注意的是,转子振动范围并不仅仅包含了转子相关振动成分,轴承相关频率也会发生在该范围内。保持架损坏可产生低于转子转速频率1/2的振动成分,另外研究结果表明,内滚道上的沟槽也能产生在转子振动范围内的信号。 2. 主冲击频率范围监测采用滚动轴承的机器的第二个频率范围是主冲击频率(滚动体通过频率)范围。如上所述,滚动轴承产生的特征频率与其几何尺寸和转速有关。主冲击是用于描述滚动体内外滚道缺陷引起的振动频率的术语,定义为外滚道滚动体

28、通过频率的17倍(17EPx)。这个频率范围内的振动可采用加速度、速度或位移进行有效测量。现场研究结果表明,滚动轴承故障中约90%为内滚道或外滚道缺陷,其余10%为滚动体缺陷(加速度和速度信号中具有主冲击频率成分,在REBAM信号中有转子频率范围成分)或保持架损坏(产生转子频率成分)。围绕轴承故障频率建立监测频率范围,滤除转子相关振动频率,就有可能获得更有效的轴承状态监测效果。接近损坏阶段这个阶段反映了轴承处于损坏的早期,轴承尚无肉眼可见的头发丝般的裂纹或用显微镜才能看到的划痕,这些缺陷处于滚道表面以下,随着轴承的运行会进一步发展。这个阶段,轴承产生的高频(7EPx)可能会增大。若在该阶段测量

29、轴承温度或主冲击振动,轴承温度和主冲击振动都会处于正常水平。在该阶段下,轴承仍具有足够的安全运行寿命,无需进行更换。损坏阶段在该阶段,轴承存在的缺陷发展到肉眼可见的程度,产生可以听到的声音,轴承温度将升高,轴承相关振动(主冲击)幅值达到易于检测的水平。一旦轴承进入损坏阶段,需要更换轴承或者增加监测密度以估计轴承达到彻底损坏前还能安全运行多长时间。这个阶段一般认为是更换轴承的经济时间,如果这个时候不更换轴承,就会逐渐进入损坏的最后阶段接近彻底损坏彻底损坏阶段。接近彻底损坏彻底损坏阶段进入这个阶段,轴承的失效速度非常迅速,轴承产生的噪声明显增大,轴承温度进一步升高,直至轴承超温。快速的磨损会导致轴

30、承间隙增大,由此引起转子相对轴承运动增大。滚动轴承设计中不允许转子相对轴承运动,因此这个阶段因过大的转子和轴承相对运动导致机器内部摩擦是非常危险的。该阶段轴承相关(主冲击)振动幅值会明显增大,高频振动数据在该阶段可能不可信,在分析和解释这些数据时应予以注意。由于轴承缺陷具有的“自研磨性”,在该阶段高频振动幅值通常是下降的,这个现象在低速机器中尤为如此。本监测系统包括五大部分: 智能数据采集站 数据采集系统是整个网络中最前端的工作站,其主要目的是将各种被监测物理量采集、传送。为了提高数据采集站的可靠性和稳定性,采用工业控制计算机主机板、机箱和电源,配合特殊设计的各种信号调理板,完全满足现场苛刻的环境。数据采集器可靠性指标为平均无故障时间不小于40000小时。其主要功能如下: 同步整周期采集同步整周期采集是以键相位信号为基准实现多通道的同时采样。整周期采样是在硬件控制下实现的。在机器每一转动周期内由硬件产生采样脉冲序列,每周期内的采样点数通过编

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1