ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:100.51KB ,
资源ID:27090407      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/27090407.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(通风机的实际特性曲线.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

通风机的实际特性曲线.docx

1、通风机的实际特性曲线第四节通风机的实际特性曲线、通风机的工作参数表示通风机性能的主要参数是风压 H、风量Q风机轴功率N、效率 和转速n等。(一)风机(实际)流量Q风机的实际流量一般是指实际时间内通过风机入口空气的体积, 亦称体积流量(无特殊说明时均指在标准状态下),单位为 厂:,丄丄一或叮I。(二) 风机(实际)全压Hf与静压HS通风机的全压 H是通风机对空气作功,消耗于每 1m3空气的能量(Nm/m3或Pa), 其值为风机出口风流的全压与入口风流全压之差。 在忽略自然风压时,Ht用以克服通风管网阻力hR和风机出口动能损失 hv,即Ht =h R+h v, 44 1克服管网通风阻力的风压称为通

2、风机的静压 Hs, PaHs=h R=RCf 4-4-2因 Ht=Hs+hv 4-4-3(三) 通风机的功率通风机的输出功率(又称空气功率)以全压计算时称全压功率 N,用下式计算:N=HQX 10-3 4-5-4用风机静压计算输出功率,称为静压功率 2,即:NS=hSQX 103 4-4-5因此,风机的轴功率,即通风机的输入功率 N (kW几 100%, 4-5-6或 :4-4-7式中:t, S分别为风机折全压和静压效率。设电动机的效率为 m传动效率为tr时,电动机的输入功率为 N,则HtQ1000斑九4-4-8二、通风系统主要参数关系和风机房水柱计(压差计)示值含义掌握矿井主要通风机与通风系

3、统参数之间关系,对于矿井通风的科学管理至关重 要。为了指示主要通风机运转以及通风系统的状况,在风硐中靠近风机入口、风流稳定 断面上安装测静压探头,通过胶管与风机房中水柱计或压差计(仪)相连接,测得所在 断面上风流的相对静压 h。在离心式通风机测压探头应安装在立闸门的外侧。水柱计或 压差计的示值与通风机压力和矿井阻力之间存在什么关系?它对于 通风管理有什么实际意义?下面就此进行讨论。1抽出式通风1)水柱(压差)计示值与矿井通风阻力和风机静压之间关系如图4-4-1 ,水柱计示值为4断面相对静压h4, h4 (负压)=P4-Po4(P4为4断面绝对 压力,P04为与4断面同标高的大气压力)。沿风流方

4、向,对1、4两断面列伯努力方程:hR14 = (P l+hv l+ p ml 2 gZ 12)- (P 4 + h v4 + p m34 gZ34)式中:hR14 1至4断面通风阻力,Pa ;R、P4分别为1、4断面压力,Pa;hv1、hv4 分别为1、4断面动压,Pa;Z12、Z34 分别为12、34段高差,m;p m12、 p m34 分别为12、34段空气柱空气密度平均值,kg/m 3;因风流入口断面全压Pt1等于大气压力P01 ,即R+hv1 =Pt 1=Po1,又因1与4断面同标高,故1断面的同标高大气压P01 与4断面外大 气压 P0 4 相等。又:p m1 2gZ12 p m34

5、gZ34 =Hm故上式可写为hR1 4=Po4-P 4-h v4 +HnhR1 4=|h 4|-h v4 + Hn即:|h 4|=h R1 4+hv 4-H N 4-4-9根据通风机静压与矿井阻力之间的关系可得Hh+HN=|h 4|-h v4=ht 4 4-4-10式4-4-9 和式44 10,反映了风机房水柱计测值 h4与矿井通风系统阻力、通风机静压及自然风压之间的关系。 通常hv4数值不大,某一段时间内变化较小, 厲随季节变化,一般矿井,其值不大,因此,|h 4|基本上反映了矿井通风阻力大小和通风机静压 大小。如果矿井的主要进回风道发生冒顶堵塞,则水柱计读数增大;如果控制通风系统 的主要风

6、门开启。风流短路,则水柱计读数减小,因此,它是通风管理的重要监测手段2)风机房水柱计示值与全压 Ht之间关系。与上述类似地对4、5断面(扩散器出口)列伯努力方程,便可得水柱计示值与全压 之间关系H = | h4| hv4 + h Rd+hv5即 | h4| =Ht+hv4-h Rd-h v5 4-4-11式中hRd 扩散器阻力,Pa ;hv5 扩散器出口动压,Pa;根据式4-4-11 可得H=hRi2+ h Rd+hv4H. +HN=h R14+ h Rd+h v5 4-4-122、压入式通风的系统如图4-4-2,对1、2两断面列伯努力方程得:hR12=(P 1+h v 1 + P m1 gZ

7、1 )-(P 2+h v2 + p m2 g乙)因风井出口风流静压等于大气压,即P2 = P02 ;1、2断面同标高,其同标高的大气压相等,即P01-P02 ,故 P1 -P2=P1-P 01 =h1又 p mgZ 1- p m2 gZ2=HN故上式可写为h R1 2=h1+h V1 - h V2 + HN所以风机房水柱计值:h 1=hR12+hv2-h V1-Hn又 Ht=Pt 1-P 11 =Pt1 -P o=P1+h v1-P o=h 1+h v1Ht+HN=h R12+hv2 4-4-13由式4-4-12和式4-4-13可见,无论何种通风方式,通风动力都是克服风道的阻力 和出口动能损失

8、,不过抽出式通风的动能损失在扩散器出口,而压入式通风时出口动能 损失在出风井口,两者数值上可能不等,但物理意义相同。三、通风机的个体特性曲线当风机以某一转速、在风阻R的管网上工作时、可测算出一组工作参数风压H、风量Q、功率N、和效率n,这就是该风机在管网风阻为R时的工况点 。改变管网的风阻,便可得到另一组相应的工作参数,通过多次改变管网风阻,可得到一系列工况参数。 将这些参数对应描绘在以Q为横坐标, 以H、N和n为纵坐标的直角坐标系上, 并用光滑曲线分别把同名参数点连结起来, 即得HQ、 NQ和n Q曲线, 这组曲线称为通风机在该转速条件下的个体特性曲线 。有时为了使用方便,仅采用风机静压特性

9、曲线(HS Q )。为了减少风机的出口动压损失,抽出式通风时主要通机的出口均 外接扩散器。通常把外接扩散器看作通风机的组成部分, 总称之为通风机装置。通风机装置的全压H t为扩散器出口与风机入口风流的全压之差,与风机的全 压H t之关系为丄 丄 化 4-4-14式中:h 扩散器阻力。通风机装置静压H sd因扩散器的结构形式和规格 不同而有变化,严格地说丄 - - - 4-4-15图4-4-3 Ht、H td、H s和H sd之间的相互关系图 式中:h vd 扩散器出口动压。比较式4 4 10与式4 4 15可见,只有当hd+hvdHs,即通风 机装置阻力与其出口动能损失之和小于通风机出口动能损

10、失时, 通风机装置的静压才会因加扩散器而有所提高,即扩散器起到回收动能的作用。图4 4 3表示了H t、H td、H s和H sd之间的相互关系,由图可见,安装了设计合理的扩散器之后,虽然增加了扩散器阻力,使H tdQ曲线低于H tQ曲线,但由于hd+hvdhv,则说明了扩散器设计不合理。安装扩散器后回收的动压相对于风机全压来说很小, 所以通常并不把通风机特性和通风机装置特性严加区别。通风机厂提供的特性曲线往往是根据模型试验资料换算绘制的, 一般是未考虑外接扩散器。而且有的厂方提供全压特性曲线,有的提供静压特性曲线,读者应能根据具体 条件掌握它们的换算关系。图4-4-4和图4-4-5分别为轴流

11、式和离心式通风机的个体特性曲线示例图4-4-4轴流式个体特性曲线轴流式通风机的风压特性曲线一般都有马鞍形驼峰存在 。而且同一台通风机的驼峰 区随叶片装置角度的增大而增大。驼峰点D以右的特性曲线为单调下降区段,是稳定工 作段;点D以左是不稳定工作段,风机在该段工作,有时会引起风机风量、风压和电动 机功率的急剧波动,甚至机体发生震动,发出不正常噪音,产生所谓喘振(或飞动)现 象,严重时会破坏风机。 离心式通风机风压曲线驼峰不明显 ,且随叶片后倾角度增大逐 渐减小,其风压曲线工作段较轴流式通风机平缓;当管网风阻作相同量的变化时,其风 量变化比轴流式通风机要大。离心式通风机的轴功率N又随Q增加而增大,

12、 只有在接近风流短路时功率才略有下降。因而,为了保证安全启动,避免因启动负荷过大而烧坏电机,离心式通风机在启动时应将风硐中的闸门全闭,待其达到正常转速后再将闸门逐渐打开。 当供风量超过需风量过大时,常常利用闸门加阻来减少工作风量,以节省电能。轴流式通风机的叶片装置角不太大时,在稳定工作段内,功率 N随Q增加而减小。所以轴流式通风机应在 风阻最小时启动,以减少启动负荷。在产品样本中,大、中型矿井轴流式通风机给出的大多是静压特性曲线;而离心式 通风机大多是全压特性曲线。对于叶片安装角度可调的轴流式通风机的特性曲线, 通常以图4 7-2的形式给出,HQ曲线只画出最大风压点右边单调下降部分, 且把不同

13、安装角度的特性曲线画在同一坐标上,效率曲线是以等效率曲线的形式给出。四、无因次系数与类型特性曲线目前风机种类较多,同一系列的产品有许多不同的叶轮直径,同一直径的产品又有 不同的转速。如果仅仅用个体特性曲线表示各种通风机性能,就显得过于复杂。还有,在设计大型风机时, 首先必须进行模型实验。 那么模型和实物之间应保持什么关系?如何把模型的性能参数换算成实物的性能参数? 这些问题都要进行讨论。(一) 无因次系数1通风机的相似条件两个通风机相似是指气体在风机内流动过程相似, 或者说它们之间在任一对应点的同名物理量之比保持常数,这些常数叫相似常数或比例系数。同一系列风机在相应工况 点的流动是彼此相似的,

14、 几何相似是风机相似的必要条件, 动力相似则是相似风机的充要条件,满足动力相似的条件是雷诺数R e ( =1 )和欧拉数Eu=(人)分别相等。同 系列风机在相似的工况点符合动力相似的充要条件。2、无因次系数无因次系数主要有:(1)压力系数工 同系列风机在相似工况点的全压和静压系数均为一常数。可用下式表示:4-4-164-4-17式中r和-叫全压系数和静压系数。& 为压力系数,U为圆周速度。(2)流量系数L-由几何相似和运动相似可以推得4-4-18式中D u、一分别表示两台相似风机的叶论外缘直径、圆周速度,同系列风机的流量系 数相等。(3)功率系数风机轴功率计算公式丄中的H和Q分别用式4-4-1

15、7和式4-4-18代入得1OW =陛=亦=常数4 4-4-19同系列风机在相似工况点的效率相等,功率系数 X为常数。、门、亠三个参数都不含有因次,因此叫无因次系数。(二)类型特性曲线、-、上、乙和n可用相似风机的模型试验获得,根据风机模型的几何尺寸、实验条件及实验时所得的工况参数 Q、H、N和n。利用式4-4-17、4-4-18和4-4-19计算出该系列风机的.、匕、和n。然后以上为横坐标,以上、匕和n为纵坐标,绘出工-、打和n-曲线,此曲线即为该系列风机的类型特性曲线, 亦叫通风机的无因次特性曲线和抽象特性曲线 。图4-4-6和力图4-4-7分别为4-72-11和G4-73-11型离 心式通

16、风机的类型曲线,2K60型类型风机的类型曲线如图 4-7-2 (a)、(b)所示。可根据类型曲线和风机直径、转速换算得到个体特性曲线。需要指出的是,对于同一系列风 机,当几何尺寸(D)相差较大时,在加工和制造过程中很难保证流道表面相对粗糙度、 叶片厚度以及机壳间隙等参数完全相似,为了避免因尺寸相差较大而造成误差,所以有 些风机(4-72-11系列)的类型曲线有多条,可按不同直径尺寸而选用。图 44 6 图 44 7五、比例定律与通用特性曲线1、比例定律由式4-4-17 4-4-18和4-4-19可见,同类型风机在相似工况点的无因次系数 匸、人和n是相等的。它们的压力 H、流量Q和功率N与其转速

17、n、尺寸D和空气密度 P成一定比例关系,这种比例关系叫比例定律。将转速u=n Dn/60代入式4-4-17 4-4-18 和4-4-19得楚=03幻gmG= 0.0410SD22A= 1.127 xlO7 俱茁冠对于1、2两个相似风机而言, 一 、上 丄:、二- j,所以其压力、风量和功率之间关系为:2也丿0.00274o2 H2 p24-4-202_ 0.041087?!忑.f Q 丫 现 = a= w E4-4-21阴;甘耳宀4-4-22各种情况下相似风机的换算公式如表 4 41所示。由比例定律知,同类型同直径风机的转速变化时,其相似工况点在等风阻曲线上变化。表4-4 1 两台相似风机 H

18、 Q和N的换算1 工 3P1老宀。=A岂二出= 21 H叱P1 =/2a芒ai二色A =压力换算A瓦一可252% P氓 宀& =风量换算r =(21 二 QiQi _ 丹i2电2.2 一1崗丿功率换算堪 P24S纲 p环 P眄1%fc_例题 某矿使用主要通风机为 4-72-11 20B离心式通风机,其特性曲线如图4-4-7所示,图上给出三种不同转速 n的H-Q曲线,四条等效率曲线。转速为ni=630r/min, 风机工作风阻 R=0.0547 X 9.81=0.53657N . s /m ,工况点为 M( Q=58n/s,H t=1805Pa), 后来,风阻变为R =0.7932 N. s2/

19、m8,矿风量减小不能满足生产要求,拟采用调整转速 方法保持风量Q=58 nVs,求转速调至多少?解 因管网风阻已变,故应先将新风阻 R =0.7932 N . s2/m8的曲线绘制在图 中,得其与n1=630r/min曲线的交点为 M,其风量Q=51.5 m3/s。在此风阻下风量增至 Q=58 m3/s的转速n2,可按下式求得:n 2=n1 C2/Q1=630X 58/51.5=710r/min即转速应调至n2=710r/min,可满足供风要求。图4-4-8 4-72=11 20B离心式通风机特性曲线2、通用特性曲线为了便于使用,根据比例定律,把一个系列产品的性能参数,如压力H、风量Q 和转速n、直径D功率N和效率n等相互关系同画在一个坐标图上,这种曲线叫通用 特性曲线。图4-7-3为G4-73系列离心式通风机的对数坐标曲线,在对数坐标图中, 风阻R曲线为直线,与Q轴夹角为63. ,与机号线平行,大大简化了作风阻曲线的步骤。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1