ImageVerifierCode 换一换
格式:DOCX , 页数:20 ,大小:1.04MB ,
资源ID:27081740      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/27081740.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(压频转换器.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

压频转换器.docx

1、压频转换器课程设计(论文)说明书 设计课题: 线形电压/频率变换器 院 (系): 电子工程与自动化 专 业: 测控技术与仪器 学生姓名: 学 号: * * * 职 称: 讲 师 2011年1月19日摘 要本次的课题是线形电压/频率变换器的设计,该设计课题主要由LM331芯片及其外围电路组成,实现了将输入电压转换成一定的频率的振荡电路,具有良好的线性度和较高的转换精度。关键词:V/F转换器;LM331芯片;高精度;外围电路;线性度; AbstractThis task is to design a line voltage/frequency converter , it mainly cons

2、titute by the LM331 chip and its external circuit, realizing the input voltage converted into a certain frequency of the oscillating circuit, it has good linearity and higher conversion precision . Key words:V/F convertor;LM331 chip; High precision; External circuit; Linearity; 引言电压/频率变换电路(VFC)应用十分广

3、泛,在不同的领域有不同的名称。在无线电技术中,它被称为频率调制(FM);在信号源电路中,它被称为压控振荡器(OSC);在信号处理与变换电路中,它又被称为电压/频率变换电路和准模/数转换电路。本次课题是在老师的指导下,用LM331设计组成一个将输入电压转换成一定的频率的振荡电路。此次设计通过不断仿真与调试后达到了设计的指标要求,且该电路稳定,具有较高的转换精度和良好的线性度。1 设计任务1.1 任务说明 本次课题主要是压频转换电路的设计,通过完成此次的设计课题理解压频转换电路的原理、理解LM331的应用。要求输出波形良好的在示波器上显示出来,并且输出频率和输入电压有良好的线性关系。1.2 任务分

4、析设计一个压频转换电路,其具体指标要求如下:1) 要求将输入电压转换成一定频率的振荡电路2) 当输入信号电压在05V时,输出振荡的频率为1010KHZ3) 输入电压和输出频率之间有良好的线性关系4) 给定元件:LM331、电阻、电容、精密电位器2 设计方案选择及论证2.1 方案一:采用555定时器组成的恢复型V/FC采用集成时基电路555构成的恢复型V/FC,当时基电路555处于单稳态工作状态,3端口为低电平,场效应管FET截止。当输入电压Vi加至运放的反向输入端时,该反相积分器的输出VA下降,当VA下降到555电路2端的触发电平即VA =(2/3)Vcc时,该单稳态电路就被触发翻转,555的

5、输出端3变为高电平使场效应管FET导通电容C1迅速放电,VA 恢复为零值。电容C2同时放电,当电容C2上电压下降为(1/3)Vcc时,555电路的输出端才从高电平变至低电平,FET再次截止,如此循环,构成震荡电路。2.2 方案二:由LF356组成的积分器和LM331外围电路构成压频转换电路 LF356组成的积分器和LM331及外围电路构成的压频转换电路,其中积分器采用集成运算放大器和 RC 元件构成的反向输入积分器。模拟信号Vi经过积分器LF356进行积分处理后,在INPUT端变成与输入电压Vi成正比的稳定电流输入,通过LM331芯片进行V/F转换后,变成与电压成正比的频率信号。2.3 方案三

6、:直接由LM331及其外围电路构成压频转换器上图所示即为LM331及其外围电路组成的压频转换器。其中每个管脚元器件的连接都是典型的电路连接,如管脚为一个低通的RC滤波电路;、管脚相连,并连接一个RC电路;管脚为一个RC的充电电路;另管脚为接地,管脚接工作电压,管脚为输出且并联一个上拉电阻。2.4 方案比较和选择方案一中,要使用芯片555,由于555的线性度和转换精度没有LM331,而本次课题要求有较高的线性度和转换精度,所以我们首选芯片LM331,因此方案一不符合要求。方案二中,用一个LF356运放组成积分电路作为LM331的管脚输入,在这里,LF356只是起稳定输入电流的作用,如果不是高精密

7、的仪器,没必要是用运放器来稳定电流,可以直接在管脚加一个RC滤波电路即可达到要求。因此方案二对于本次的课题要求有累赘的地方,所以放弃方案二。方案三中,直接由LM331及其外围的典型电路关系,即可简便的组成一个V/F转换电路,能够达到本次课题的要求,又能提高资源的利用率,因此本次课题,选择方案三。运用LM331实现压频转换,具有电路简单,成本低廉,测量精度高并且转换位数可调的特点,在实际工作之前,对电路器件参数进行调校,调校之后,系统稳定性好。与AD574等电路相比,价格便宜好几倍2.5 系统框图的绘制图1 系统框图3 电路设计原理、参数计算及测量结果比较3.1 芯片LM331的介绍LM331的

8、内部结构图LM331是美国NS公司生产的性能价格比较高的集成芯片。LM331可用作精密的电压频率(V/F)转换器、A/D转换器、线性频率调制解调、长时间积分器以及其他相关的器件。LM331为双列直插式8脚芯片,LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。同时它动态范围宽,可达100dB,线性度好,最大非线性失真小于0.01,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。LM331内部有(1)输入比较电路、(2)定时比

9、较电路、(3)R-S触发电路、(4)复零晶体管、(5)输出驱动管、(6)能隙基准电路、(7)精密电流源电路、(8)电流开关、(9)输出保护电路等部分。输出管采用集电极开路形式,因此可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平。LM331芯片的引脚简介:引脚为电流源输出端,在fo(引脚三)输出逻辑低电平时,电流源输出对电容充电。引脚为增益调整,改变管脚所接电阻的值可调节电路转换增益的大小。引脚为频率输出端,为逻辑低电平,脉冲宽度由管脚所接t和t决定。引脚为电源地。引脚为定时比较器正相输入端。引脚为输入比较器反相输入端。引脚为输入比较器正相输入端。引脚为电源正端。3.2 LM331组

10、成的压频转换器及其工作原理 上图为LM331及其外围电路组成的典型的压频转换电路 当输入端Vi+输入一正电压时,输入比较器输出高电平,使RS触发器置位,输出高电平,输出驱动管导通,输出端f0为逻辑低电平,同时电源Vcc也通过电阻R2对电容C2充电。当电容C2两端充电电压大于Vcc的2/3时,定时比较器输出一高电平,使RS触发器复位,输出低电平,输出驱动管截止,输出端fo为逻辑高电平,同时,复零晶体管导通,电容C2通过复零晶体管迅速放电;电子开关使电容C3对电阻R3放电。当电容C3放电电压等于输入电压Vi时,输入比较器再次输出高电平,使RS触发器置位,如此反复循环,构成自激振荡。输出脉冲频率fo

11、与输入电压Vi成正比,从而实现了电压频率变换。其输入电压和输出频率的关系为:fo=(ViR4)/(2.09R3R2C2)由式知电阻R2、R3、R4、和C2直接影响转换结果fo,因此对元件的精度要有一定的要求,可根据转换精度适当选择。电阻R1和电容C1组成低通滤波器,可减少输入电压中的干扰脉冲,有利于提高转换精度。3.3 protel绘制原理图、器件选择及参数计算有上图可以看出,其中管脚的RC滤波器中,因为通过仿真结果得当R1改变时,对输出波形频率不影响,因此R1选择100K。通过实际电路板的调试,当RV1=13K,RV2=2.6K时,波形稳定。电容C7、C5、C2都为接地电容,起稳定波形的作用

12、,所以选择典型的0.01uF。R5和R8选择典型电阻值6.8K。设输出脉冲的周期为T,输出为低电平的持续时间为To,在To期间Is提供给C2、RV1的总电荷量为: 周期T内流过RV1 的总电荷量为(包括Is提供和C2放电提供) 式中IRv1为流过RV1 的平均电流;实际上,U6在很小的区域内波动(大约10mv),可近似 ; ; 故 由定时电容C5的充电方程式: 可求得 : 根据电荷平衡原理,周期T内Is提供的电荷量应等于T内RV1消耗的总电荷量,即 由此可求出输出脉冲的频率为:3.4 电路仿真仿真电路图 由上图可知,仿真时工作电压VCC=10V,其他参数如原理图相同,滑动变阻器Rv4调至13%

13、,即Rv4=13K,滑动变阻器Rv5调至13%,即Rv5=2.6K。调节输入电压,记录波形和输出频率,如下:当Vi=1V时,fo=4.000K当Vi=2V时,fo=5.291K当Vi=3V时,fo=6.452K当Vi=4V时,fo=7.634K当Vi=5V时,fo=8.772K3.5 实际电路板测量与数据整理实际电路板调试时的波形实际测量值:输入电压/Vi11.251.51.7522.252.52.753输出频率/fo4.77465.3375.9246.4897.0347.5638.18.619.149输入电压/Vi3.253.53.7544.254.54.85输出频率/fo9.62410.1

14、510.6611.1411.6412.11313.2仿真理论值:输入电压/Vi11.251.51.7522.252.52.753输出频率/fo44.3014.65155.2915.5565.8486.1736.452输入电/Vi3.253.53.7544.254.54.755输出频/fo6.7577.0927.2997.6347.8748.1978.4758.772由以上两个表格绘制出V-F关系图如下:3.6 本次课题的结果及结论由前面所列举的图形可知,本次课题的结果即为所制作的电路板能够实现将输入电压转换成一点频率的输出矩形波,且输出波形稳定,转换精度高。由以上的V-F关系图可以很直观的得出

15、一个结论:LM331及其外围电路所组成的压频转换器能将输入电压转换成一定的频率的方波,且输入电压Vi与输出频率fo成良好的线性关系,也证明了LM331的线性度很高。4 组装调试4.1 调试前所需准备 在开始调试、测量前:1)准备好可调直流电压源、示波器、万用表等设备,并检查仪器是否正常。准备一把螺丝刀调节滑动变阻器;2)用万用表检查电路板上的电路是否所有都导通,是否有虚焊的现象;3)使用万用表将工作电压和输入电压调到所需幅值;4)连接好电路,检查正负极、芯片等是否接好,然后打开电源,开始调试。4.2调试中出现的故障原因及排除方法1)波形在连接好电路后,打开所有电源发现波形不稳定,不能正常观察与

16、测量,即使调节滑动变阻器,也不能使波形完全稳定不动。此种情况为输入的杂波引起,此时连接管脚的RC低通滤波器中的电容为0.1uF,把0.1uF改为0.01uF,即可得到良好的波形。2)工作电压LM331的理论工作电压为4V至40V之间,且输出波形的频率不应该随工作电压变化而变化。但实际上如果在调试的过程中调节工作电压,输出的频率会有变动,且当工作电压低于5V时,频率变动特别大。此种情况的出现告诫我们,在调试时,要保持工作电压不变的情况下测量数据,且不宜用比5V小的工作电压。3)滑动变阻器的调节滑动变阻器是调节输出频率的主要元器件,有时刚接入的电路,在示波器上没有波形。此种情况,尝试调节两个滑动变

17、阻器,能解决这种现象。且在调节滑动变阻器时,不宜太用力也不宜太快,否则会把元器件弄坏而不能工作。5)输入电压的调节当输入电压为0V时,示波器上不显示任何波形,所以,当我们要测量最小的输出频率时,不应把输入电压调到0V而是调到与0V接近的0.1V即可,因为那时候有稳定的波形可以测量。输入电压有一个最大值,即到达最大值时,示波器上没有波形,为一条直线。这是因为管脚的电阻值的缘故。管脚的电阻值决定管脚的电压,而管脚的电压不能比管脚的电压大,所以输入电压即有一个最大值。6)管脚的阻值管脚的阻值决定着输入电压的最大值,所以管脚不能调得太低,一般为大于5K以上,才能保证输入最大电压足够大。但要改变输入电压

18、的最大值,不仅有改变管脚阻值这一方法,还有就是调节工作电压,当工作电压变大时,输入电压的最大值也会相应变大。4.3 电路设计的优缺点及建议我个人觉得,本次课设方案的核心和优点是使用较少的元器件,实现最多的功能。据我翻阅资料所了解,一般的压频转换电路都会在输入端加上一个运放,我觉得过于累赘,因为我们实验室有稳定的可调的直流电源,如果还是用运放,就有点浪费。而且有的资料里,是用的芯片不是LM331,而是555定时器之类的。据我查阅的资料了解到,LM331有非常高的线性度和转换精度,用来实现压频转换是最好的选择。但是由于实际与理论上的偏差,以及我制作过程的误差,造成了实际测量得的数据与理论仿真的数据

19、偏差有点多,如果可以,我觉得应选择更精密的元器件来完成这个压频转换器。4.4 实物图5 课设总结本次的课设作品的主要元件为LM331,在其控制下保证了系统的正常工作,达到把输入电压转换为一定频率的输出方波,并且保证输出频率与输入电压有良好的线性关系,且有较高的转换精度。用示波器可以观察到,当输入稳定的电压时,输出为稳定的方波,通过测量频率,可以用图表绘制出V-F线,可以很直观的看到V-F为一条直线,用实践证明了LM331的线性度。两周的课程设计,相较于之前所选修的电子技术基础课程,此次更增加了自己的动手实践能力。理论与实践还是有一定的差距的,在理论上不管多精确的数据,一旦用于实际中,就不得不考

20、虑其仪器,器件的误差,以及自己操作上的能力。而且,本次课设比起这个学期的照着电路连线的数电实验实验更有意义,在课设过程中添加了自己的思考,该选择怎样的电阻,电容,想要修改最后的输出,应该在什么地方做改变。虽然是一些很基础的东西,但仅仅是书上的理论学习,会让人对知识遗忘得比较快,相反,通过自己动手实践过的东西,会更加记忆深刻。看着自己成功制作出来的电路板觉得很有成就感。通过这次课设教我还学会很多关于电子产品知识。进一步的认识了我们现实生活电子产品,了解和掌握了一些简单电子元件的运用,大大的扩展了我们的知识面。提高了自己以后在学习 生活中自己动手能力。给我们很大的启发,很有助于我们将来的学习生活和

21、工作。在查阅资料中,获得了许多额外的知识,开拓视野。在原理图的设计、使用proteus仿真、使用protel绘制、实物的制作、板子调试等整个过程中加强了我分析问题和解决问题的能力,深刻体味到实践是检验真理的唯一标准这一道理。总而言之,这次课设,让我受益匪浅。谢 辞 本次课程设计在王月娥老师的悉心指导和严格要求下顺利完成,从原理图的设计到论文的完成过程,都离不开王月娥老师的正确指导,在我原理图的设计期间,王老师为我提供了许多专业知识上的指导和一些大胆的建议,如果离开王月娥老师的帮助和关怀,我不会这么顺利而全面的完成课程设计。在此,我向王老师表示深深的谢意和崇高的敬意。在课设完成之际,我还要感谢八

22、院科协给我提供溶板和砖孔的地点,并借此机会向在大学以来给予了我帮助和指导的所有老师表示由衷的谢意,感谢他们一直以来的辛勤栽培。各位任课老师认真负责,在他们的帮助和支持下,我能够很好的掌握和运用专业知识,并在这次课程设计中学以致用,顺利完成了这次的课程设计。同时,在板子的调试过程中,我还参考了有关书籍和论文,在这里一并向有关的作者表示谢意。我还要感谢周围的同学们,在课程设计这期间里,你们给了我很多启发和帮助,提出了许多宝贵的意见和建议,对于你们的支持和帮助,在此我表示深深的感谢! 参考文献 1 张永瑞.电子测量技术基础. 西安电子科技大学出版社. 2004 .7. 2 阎石.数字电子技术基础.清

23、华大学出版社.1999. 3童诗白 等.模拟电子电路技术.高等教育出版社.1998. 4 陈尚松 等.电子测量与仪器.电子工业出版社.2004.5 康光华.电子技术基础.高等教育出版社,2005.6 电子技术基础(模拟部分).第四版 高等教育出版社 康华光等7 张国雄 等.测控电路.机械工业出版社,2000.附件一课程设计1元器件清单示例学号: 0800820416 姓名: 马超 课题: 线性电压/频率转换器 序 号名 称数 量单 价备 注1LM33112100K精密电位器1320K精密电位器140.01uF电容35 6.8K电阻26 100K电阻17排针188管脚底座1DIP891011121314151617合计附件二总电路设计原理图:附件三总电路设计PCB图

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1