ImageVerifierCode 换一换
格式:DOCX , 页数:28 ,大小:150.32KB ,
资源ID:26777018      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/26777018.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(运筹学02375计算题经典题型全攻略.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

运筹学02375计算题经典题型全攻略.docx

1、运筹学02375计算题经典题型全攻略第二章 预测2.3 时间序列预测法一、滑动平均预测法 1、简单滑动平均预测法:算数平均数 1横向比较法:同一时间自己跟别人比 【例题计算题】某新产品要确定其市场价格,同行参考价格为1.5元、1.2元、0.9元、0.7元0.5元,则该产品价格可定为多少?【答案】我们可采用同行的平均数来作为我们的参考价格: 元【解析】横向比较法就是求平均数,用平均数作为参考。2纵向比较法:简单滑动平均预测法 【例题计算题】上述电池厂在生产和销售该电池6个月后,得到前后顺序排列的6个出厂价格:1元、1.1元、1.1元、1.2元、1.2元、1.3元,试预测第7个月的出厂价格,只参考

2、就近三个月价格。【答案】元【解析】纵向比较法也是求平均数。二、加权平均预测法根据不同数值所占比重不同,在简单滑动平均预测法中加入相应权值即可加权平均数计算公式为:三、指数平滑预测法指数平滑预测法的公式为: 其中:,t+1期,t期的预测值; t期的实际值; 平滑系数。 的取值范围一般为:;当我们发现t期的预测值与实际值误差较大时,我们可以加大平滑系数的值,假设误差不大,可取的小一些;在特殊情况下,即当商品的价格看涨或看跌时,亦可取大于1的数。2.4 回归模型预测法二、一元线性回归模型预测法 设出回归方程:; 确定系数:a,b也称为回归模型的参数。 系数确定的原则应用最小二乘法最小二乘法:寻求使误

3、差平方和为最小的配合趋势线的方法。 运用最小二乘法,得出系数的计算公式: 求出回归方程后,根据题目中所给的某一变量的数据,带入即可求出另一变量的值。 置信区间:实际值位于这个区间范围的概率应到达95%以上,假设大致符合正态分布,则置信区间为:。第三章 决 策【例题计算题】某公司准备销售某新产品。拟定的价格有A1、A2、A3三个方案,预计进入市场后可能的销售状况自然状态也有三种,收益值如表。试以最大最大决策标准作出该产品价格的决策选择。销路较好销路一般销路较差较高价格出售A118000100006000中等价格出售A216000130008000较低价格出售A3120001200012000【答

4、案】用最大最大决策标准决策如下: 销路较好销路一般销路较差按行取最大值较高价格出售A11800010000600018000中等价格出售A21600013000800016000较低价格出售A312000120001200012000按最后列取最大值18000 选择A1方案作为决策方案。【解析】最大最大决策方案就是大中取大。 【例题计算题】某月饼厂自销一种新月饼,每箱成本40元,售价90元,但当天卖不掉的产品要报废。据以往统计资料预计新月饼销售量的规律见下表: 需求数100箱110箱120箱130箱占的比例0.20.30.40.1(1)今年每天应当生产多少箱可获利最大(2)具有精确情报时的收益

5、【答案】1编制决策收益表,并计算每种方案的期望值为: 销售100箱销售110箱销售120箱销售130箱期望值0.20.30.40.1生产100箱50005000500050005000生产110箱46005500550055005320生产120箱42005100600060005370生产130箱38004700560065005060所以,由决策收益表中可以看出,当每天生产120箱时,可获利最大为5370元. 2具备精确情报时,生产多少就能卖多少,不存在损失,因此收益表为 销售100箱销售110箱销售120箱销售130箱期望值0.20.30.40.1生产100箱50001000生产110箱

6、55001650生产120箱60002400生产130箱36500650最大期望收益5700 具备精确情报时,最大期望收益值为5700元。【解析】重点考察期望值的计算。3.5 决策树决策树的基本结构为:第四章 库存管理数学方法: 由 库存费用=订货费+保管费=年需要量/订货量*一次订货费+平均库存量*单位物资保管费 可推导出当 订货费=保管费 时库存总费用到达最低,带入已知数据可计算出经济订货量。其中平均库存量=订货批量的一半,平均库存额=平均库存量*单价。【例题计算题】某工厂需要某种零件,每年需要量为1200个,每次订货的订货费用为300元,每个零件保管费为2元,求每次的最正确订货批量。【答

7、案】设最正确订货批量为X个/次则当保管费=订货费时,库存费用最低即 X=600个/次所以每次的最正确批量为600个.【解析】由库存费用=订货费+保管费=年需要量/订货量*一次订货费+平均库存量*单位物资保管费 可推导出当订货费=保管费时库存总费用到达最低,带入已知数据可计算出经济订货量。二、正确评价供给者提供的数量折扣 经济订货量是使我们库存费用最低的订货批量,但供给商往往提出如果提高一次订货量,那么会在产品价格方面做出优惠,此时库存费用会增加,我们需要比较才能确定出哪种方案更合适。【例题计算题】某企业年需采购轴承200台套,每台套500元,每次的订货费用为250元,保管费用率为125%,供给

8、商提出,假设每次订货100台套,则轴承的进厂价可降为490元/台套。试问能否接受这种优惠,每次订货100台套? 2008.7真题【答案】设经济订货量为X台套/次则 X=40台/次此时库存费用为2500元成本为200500=100000元总费用为102500元优惠后库存费用为总成本为200490=98000总费用为3562.5+98000=101562.5所以接受这种优惠 【解析】分别计算不同方案下的总费用,选择费用较少的方案。第五章 线性规划【例题计算题】用图解法解线性规划问题:max F=2X1+4X2s.t. 4X1+5X240 2X1102X28【答案】如下图如下图,当X1=2,X2=6

9、.4时,取得最大值为29.6。【解析】图中阴影部分为可行解区,假设有最优解,则最优解在可行解区的凸交点上,过交点画平行于目标函数的等值线这里为等利润线,图中虚线,原点距离等利润线越远,说明利润越大,所以最远那条等利润线经过的那个交点即为最优解。 三、应用例如 【例题计算题】 用单纯形法求解 目标函数: MaxZ=2X1+X2 约束条件:X2 10;2X1+5X2 60;X1+X2 18;3X1+X2 44;X1,X2 0。答案:引入松弛变量X3,X4,X5,X6把不等式变为等式。 X2+X3=10; 2X1+5X2+X4=60; X1+X2+X5=18; 3X1+X2+X6=44; X1,X2

10、 ,X3,X4,X5,X60初始单纯形表为:Cj210000Z基变量X1X2X3X4X5X6常数0X3011000100X4250100600X5110010180X631000144Zj0000000Cj-Zj210000Z进行迭代求解第一次迭代:Cj210000Z基变量X1X2X3X4X5X6常数0X3011000100X4013/2010-2/392/30X502/3001-1/310/32X111/30001/344/3Zj22/30002/388/3Cj-Zj01/3000-2/3Z-88/3第二次迭代:Cj210000Z基变量X1X2X3X4X5X6常数0X30010-1.50.5

11、50X40001-6.51.591X201001.5-0.552X11000-0.50.513Zj21000.50.531Cj-Zj0000-0.5-0.5Z-31所以最优解为X1=13,X2=5,X3=5,X4=9,X5=X6=0时,MaxZ=31。【解析】该问题为一个完整的单纯形法求解过程,考试过程中从中间挑出一部分作为考试题目.第六章 运输问题复习建议本章在历年考试中,处于相当重要的地位,建议学员全面掌握,重点复习。从题型来讲包括单项选择题、填空题、名词解释和计算题题型都要加以练习。重要考点:西北角法;闭合回路法和修正分配法等。6.1 运输问题及其特殊结构一、运输问题产销平衡表 销地 产

12、地B1B2 .Bn产量A1X11X12X1na1 .AmXm1Xm2Xmnan销量b1b2bn每一格中的具体运输数量我们不确定,我们可以设为Xij,代表从第i个产地运往第j个销售地点的运输数量,对于不同的运输数量,会产生不同的总运费,我们的目地就是找出所有满足要求限制的可能的运输数量的分配方案,然后从这些运输方案中选择最优的即总运费最低的方案。运输问题的解:使得总运费最低的具体运输数量。单位运价表 销地 产地B1B2 .BnA1C11C12C1n .AmCm1Cm2Cmn单位运价表中每一个数据代表从不同产地运输一单位产品到不同销售地点所产生的运费,我们用Cij表示。产销平衡表和单位运价表是一一

13、对应的,我们可以把这两个表合为一个表称为平衡表。二、表上作业法该方法分为下面三个步骤:1、找到一个初始方案 2、根据判定标准判断是否最优3、假设不是最优,对该案进行改良,然后重复第2、3步直到求出最优解来为止。6.2 供需平衡的运输问题运输问题存在供需平衡、供大于需和供小于需三种情况其模型结构是不同的。我们先来看供需平衡问题,下面举例予以说明:某一运输问题的产销平衡表和单位运价表如下列图所示平衡表B1B2B3产量A110203050A230204060销量205040110该表是产销平衡表和单位运价表合起来的,每一格中右上角小格对应的是单位运费。1、求的一个初始的运输方案利用西北角法求的初始方

14、案:B1B2B3产量A1102030502030A2302040602040销量205040110数字格数=m+n-1,该问题数字格数=2+3-1=5,假设不相等则称出现了退化现象,总格数为mn,除了数字格数,剩下的mn-m+n-1为空格数。方案确定了,该方案对应的总运费就确定了,此时产生的运输费用为:, Z=20*10+30*20+20*20+40*40=2800 但此方案一般不是最优方案即总运费是否最小,需要我们进一步的判断。2、判定是否最优判定标准:1改良路线:从某一空格开始,所寻求的那一条企图改变原来运输方案的路线。例如A1B3空格,字母公式表达:LA1B3=+A1B3-A2B3+A2

15、B2-A1B2 ; +代表增加运输数量,-代表减少运输数量,注意,每条改良路线中只包含一个空格。同理我们可以找到余下空格的改良路线。每一个空格对应一条改良路线,要把所有的改良路线全部找出来。2改良指数:沿着改良路线,当货物的运输量做一个单位的改变时,会引起的总运输费用的该变量。以A1B3格来举例,在沿着改良路线的格中,又增加运费的,也有减少运费的,总的变化量为:IA1B3=+30-40+20-20=-10,这个数值即为改良指数,为负值说明沿着这条路线改变一个单位可以减少10的总运费,同时说明既然能减少运费,说明原来的方案还有改良的空间,所以原来的方案那就不是最优方案,所以说改良指数就是判别的标

16、准,为负值说明还能改良,为正值说明再改的结果为增加运费,原来的方案就是最优方案。当然这里要求每个空格的改良指数都要求出来都为正值才能说明原方案是最优方案,有一个为负值就不是最优方案。3、寻求改良方案 寻求改良方案的方法主要有闭合回路法和修正分配法1闭合回路法在所有空格中,挑选绝对值最大的负改良指数所在的空格作为调整格,沿着该空格的改良路线,挑选是负号格的最小运量为调整运量。2修正分配法 修正分配法也叫位势法。把原来的运输图进行一些改良,在图的顶上加上一行,在图的左侧加上一列.K1=10K2=20K3=40B1B2B3产量R1=0A1102030502030R2=0A2302040602040销

17、量205040110根据数字格列出方程:C=R+K R1+K1=10 R1+K2=20 R2+K2=20 R2+K3=40令R1=0,依次解出剩下的为:K1=10,K2=20,R2=0,K3=40对空格求改良指数位势差位势差=C-R-KIA1B3=30-0-40=-10IA2B1=30-0-10=20 在所有空格中,挑选绝对值最大的负改良指数所在的空格作为调整格,沿着该空格的改良路线,挑选是负号格的最小运量为调整运量进行改良,得到新方案再重复判定、改良过程即可。第七章 网络计划技术三、箭线式网络图的编绘 【例题计算题】某工程工序活动明细如下表所示:工序 紧前工序工作时间天A无20B无15CA,

18、B15DA15EA,B10FD,E10GC,F25HD,E15 【答案】【例题计算题】下列图是截取网络图的一部分,在图中空白处填入有关活动和结点的网络时间单位:天。 【答案】【解析】考察基本公式的计算,这里尽可能用数形结合的方法记忆。记住口诀:1最早时间:从前往后挨个加,遇到分叉选大的;2最迟时间:从后往前挨个减,遇到分叉选小的。第八章 图论方法【例题计算题】某自来水公司欲在某地区各高层住宅楼间敷设自来水管道并与主管道相连。其位置如下列图,节点代表各住宅楼和主管道位置,线上数字代表两节点间距离单位:百米。如何敷设才能使所用管道最少?【答案】【解析】按照克鲁斯喀尔的算法很轻松得出答案。8.4 最

19、短路线问题最短路线问题为当通过网络的各边所需要的时间、距离或费用已知时,寻求两点间的距离最短或费用最少的路性问题。采用的方法为逆向推算法。【例题计算题】某城市东到西的交通道路如下列图所示,线上标注的数字为两点间距离(单位:千米)。某公司现需从市东紧急运送一批货物到市西。假设各条线路的交通状况相同,请为该公司寻求一条最正确路线。【答案】【解析】从终点逆向标到起点即可说明:方框中的数字代表改点到终点最短距离;方框上的标示从改点到终点最短路线的走法。8.5 最大流量问题最大流量问题,就是在一定条件下,要求流过网络的流量为最大的问题。【例题计算题】某网络如图,线上标注的数字是单位时间通过两节点的流量。

20、试求单位时间由网络始点到网络终点的最大流量单位:吨。 【答案】第一条路:1246 流量为5吨 第二条路:1346 流量为2吨 第三条路:1356 流量为6吨 所以最大流量为5+2+6=13吨。【解析】路线的选择顺序不唯一,但不管哪种选择最终的总流量是相等的。小结:三种求解问题方法在实际中的应用1、最小枝杈树问题主要应用于管道、 线、电线、网线等线路铺设中总路线最短。2、短路线问题为当通过网络的各边所需要的时间、距离或费用已知时,寻求两点间的距离最短或费用最少的路性问题两点间距离最短。3、最大流量问题,就是在一定条件下,要求流过网络的流量为最大的问题。第九章 马尔科夫分析9.1 马尔科夫分析的数

21、学原理在20世纪初1907年俄国数学家马尔科夫发现:在某些事物的概率转换过程中,第N次试验的结果,常常由第N-1次的试验结果所决定。概率向量:任意一个向量u=(u1,u2,un),如果它内部的各个元素为非负数,且总和等于1,则称此向量为概率向量。2、概率矩阵:一方阵每一行都是概率向量,则称为概率矩阵。3、平衡概率矩阵或固定概率矩阵: 设有概率矩阵, 当,必有:,称作平衡固定概率矩阵。9.2 马尔科夫分析问题的要求设第一周期的市场份额为T1,转移概率矩阵为P,则第二周期的市场份额为T2=T1*P,以此类推可以得出任意周期的市场份额。【例题计算题】甲、乙两家啤酒厂同时向市场投放一种啤酒,初时,它们

22、所占市场份额相等。第二年,两啤酒厂为吸引顾客,都改换了各自的产品包装,其结果是:甲保持其顾客的70%,丧失30%给乙;乙保持其顾客的60%,丧失40%给甲。第三年,假设顾客的购买倾向与第二年末相同,但甲、乙都为自己的产品大做广告,其结果是:甲保持其顾客的90%,丧失10%给乙;乙保持其顾客的80%,丧失20%给甲。 问:第二年末,两家啤酒厂各占多少市场份额?【答案】由已知得第一年市场份额=(0.5,0.5),第二年对应的概率矩阵为 P=所以第二年末的市场份额为= P=(0.5,0.5) =0.55,0.45【解析】预测未来一个周期的市场份额为现在市场份额与转移概率的乘积。5、最终平衡市场份额确

23、实定不同销售者在销售过程中的市场份额每个周期都在改变,假设消费者的选择概率不变,那么市场份额在经过一个较长时期的转换后会一直不变,我们称为最终平衡的市场份额。 计算方法:最终平衡时,可推导出公式T=TP,利用该公式列出线性方程组,在加上概率向量T本身的特点即非负且之和为1,解出未知数来即可。【例题计算题】 某商场对甲,乙,丙三种品牌服装的顾客作调查:原穿甲牌仍然继续穿甲牌的人占75%,改穿乙牌的人占10%,改穿丙牌的人占15%。原穿乙牌仍然继续穿乙牌的人占60%,改穿丙牌的人占20%,改穿甲牌的人占20%。原穿丙牌仍然继续穿丙牌的人占90%,改穿乙牌的人占5%,改穿甲牌的人占5%。试问:最终这

24、三种品牌服装的市场占有率分别为多少(保留三位有效数字)?【答案】由已知的该问题的转移概率矩阵为: 设最终这三种品牌服装的市场占有率分别为X1,X2,X3 由 X1,X2,X3=X1,X2,X3得方程组为 0.75X1+0.20X2+0.05X3=X1 0.10X1+0.60X2+0.05X3=X2 0.15X1+0.20X2+0.90X3=X3且由题意得X1+X2+X3=1 解方程组得:X1=0.236,X2=0.137,X3=0.627 即三种品牌的服装最终市场占有率分别为:甲:23.6%,乙:13.7%,丙:62.7%。【解析】考察最终市场份额的间接求法。在这里解方程组有点难度,建议带好计

25、算器。9.3 马尔科夫分析在管理工作中的应用参考上面解题方法,对照教材例题,熟练掌握即可。其中P172页例1和P173页例2为重点。本章总结:本章内容选择、填空和名词解释都会涉及马尔科夫基本概念、概率向量和概率矩阵特殊注意;计算题考察主要有两个知识点:1、预测下一周期或下二周期的市场份额;2、计算最终的市场份额,本章9.3中例题特殊注意,考原题考过假设干次。第十章 盈亏分析模型10.1 盈亏平衡问题概述1、盈亏平衡分析是一种管理决策工具,它用来说明在一定销售量水平上总销量与总成本因素之间的关系。2、模型结构 利润=销售收入-总成本 S=I-C3、盈亏平衡点:总成本=总收入即此时利润为0.10.

26、2 盈亏分析模型的基本结构一、产品成本结构 工业产品的成本费用一般可分为:原材料费、燃料动力费、工资及附加费、废品损失费、车间经费和企业管理费六项。1、固定成本和可变成本我们把总成本C分成2部分:固定成本F和可变成本V,即C=F+V.上述六项费用中前四项属于可变成本,后两项属于固定成本。2、建立成本结构 “计划性能法”的第一步是把固定成本再分成两大类:预付成本Fc和计划成本Fp即F=Fc+Fp. 可变费用V跟生产数量挂钩:V= Q, V为单位可变成本,Q为生产数量。所以成本模型为:C=F+V= Fc+Fp+ Q 二、产品销售结构 总销售收入=产品销售价格*销售数量即 I=MQ。10.3 线性盈亏分析模型及其应用例如线性盈亏分析模型是指变动费用和销售收入随产量或销售量增加而成比例地增加的这种线性变化。1、基本公式:S=I-C C=F+V=F+Q I=MQ假设不特殊指明,我们在计算过程中默

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1