1、机械振动和机械波知识点总结机械振动和机械波、知识结构二、重点知识回顾1机械振动(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力, 它可以是一个力或一个力的分力,也可以是几个力的合力。产生振动的必要条件是: a、物体离开平衡位置后要受到回复力作用。 b、阻力足够小。(二) 简谐振动1.定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移
2、定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即 F= kx,其中“一”号表示力方向跟位移方向相反。2.简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。3.简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。(三) 描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入 下面几个物理量。1.振幅:振幅是振动物体离开平衡位置的最大距离,常用
3、字母“ A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。2.周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期 T跟频率f之间是倒数关系,即 T=1/f。振动的周期和频率都是描述振动快 慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫 固有周期和固有频率。(4)单摆:摆角小于 5。的单摆是典型的简谐振动。细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是
4、:最大摆角小于 5。,单摆的回复力 F是重力在圆弧切线方向的分力。单摆的周期公式是 T=。由公式可知单摆做简谐振动的固有周期与振幅, 摆球质量无关,只与 L和g有关,其中L是摆长,是悬点到摆球球心的距离。 g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其 g应为等效加速度。(5)振动图象。简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵 轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性 变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或 不同位置时位移、速度、加速度,回复力等
5、的变化情况。(6)机械振动的应用一一受迫振动和共振现象的分析(1)物体在周期性的外力(策动力)作用下的振动叫做受迫振动,受迫振动的频率在 振动稳定后总是等于外界策动力的频率,与物体的固有频率无关。(2)在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫 共振,声音的共振现象叫做共鸣。2机械波中的应用问题1.理解机械波的形成及其概念。(1) 机械波产生的必要条件是: 1有振动的波源;2有传播振动的媒质。(2)机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同。(3)机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与 振动的质
6、点仍在原平衡位置附近振动并没有随波迁移。(4) 描述机械波的物理量关系: V f注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介 质无关,波速取决于质点被带动的“难易” ,由媒质的性质决定。2.会用图像法分析机械振动和机械波。振动图像,例:波的图像,例:振动图 像与波 的图像 的区别y100-10-A100一 e1 3 A)2 6 横坐标表示质点的振动时间横坐标表示介质中各质点的平衡位置表征单个质点振动的位移随时间变 化的规律表征大量质点在问一时刻相对于平衡位 置的位移相邻的两个振动状态始终相同的质 点间的距离表示振动质点的振动周 期。例:T 4s相邻的两个振动始终
7、同向的质点间的距离表小波长。例: 8m振动图像随时间而延伸,而以前的波动图像一般随时间的延续而改变、【典型例题分析】【例1】单摆的运动规律为:当摆球向平衡位置运动时位移变 ,回复力变 ,加速将一个小球轻放在弹簧度变,加速度 a与速度u的方向 ,速度变,摆球的运动性质为 弹簧弹起后,在弹簧处于原长时与弹簧分离,这个简谐运动有下方振动最大位移的位置,但 无上方振动最大位移的位置,那么小球在运动过程中的最大加速度将大于重力加速度。【例3】 已知某摆长为1m的单摆在竖直平面内做简谐运动,贝U: (1)该单摆的周期为 ; (2)若将该单摆移到表面重力加速度为地球表面重力加速度 1/4倍的星球表面,则其振
8、动周期为; (3)若在悬点正下方摆长中点处钉一光滑小钉,则该小球摆动 的周期为。分析:第一问我们可以利用单摆周期公式计算出周期;第二问是通过改变当地重力加速 度来改变周期的。只要找出等效重力加速度,代入周期公式即可得解。第三问的情况较为复 杂,此时小球的摆动已不再是一个完整的单摆简谐运动。 但我们注意到,小球在摆动过程中,摆线在与光滑小钉接触前后,分别做摆长不同的两个简谐运动,所以我们只要求出这两个摆 长不同的简谐运动的周期,便可确定出摆动的周期。把,可得T=2s。 g【例4】一弹簧振子做简谐运动,振动图象如图 63所示。振子依次振动到图中c、d、e、f、g、h各点对应的时刻时,(1)在哪些时
9、刻,弹簧振子具有:沿 大加速度;沿x轴正方向的最大速度。(2)弹簧振 子由c点对应x轴的位置运动到 e点对应x轴的位 置,和由e点对应x轴的位置运动到 g点对应x轴 的位置所用时间均为。弹簧振子振动的周期是多 少? ( 3)弹簧振子由e点对应时刻振动到 g点对 应时刻,它在x轴上通过的路程是 6cm,求弹簧振 子振动的振幅。分析:(1)弹簧振子振动的加速度与位移大小 成正比,与位移方向相反。振子具有沿 x轴正方向最大加速度,必定是振动到沿 x轴具有负向的最大位移处,即图中振子振动到平衡位置时, 具有最大速度,在h点时刻,振子速噂6-3 再稍过一点时间,振子的位移为正值,这就说明在 h点对应的时
10、刻,振子有沿 x轴正方向的最大速度。(2)图象中c点和e点,对应振子沿 x轴从+7cm处振动到7cm处。e、f、g点对应振 子沿x轴,从一7cm处振动到负向最大位移处再返回到一 7cm处。由对称关系可以得出,振子从c点对应x轴位置振动到g点对应x轴位置,振子振动半周期,时间为,弹簧振子振动 周期为T=。(3)在e点、g点对应时间内,振子从 x轴上一7cm处振动到负向最大位移处,又返回一7cm处行程共6cm,说明在x轴上负向最大位移处到 7cm处相距3cm,弹簧振子的振幅 A=10cm 解答:(1) f 点;h 点。(2) T=。(3) A=10cm=说明:本题主要考察结合振动图象如何判断在振动
11、过程中描述振动的各物理量及其变化。讨论振子振动方向时,可以把振子实际振动情况和图象描述放在一起对比,即在 x轴左侧画一质点做与图象描述完全相同的运动形式。当某段图线随时间的推移上扬时,对应质点 的振动方向向上;同理若下降,质点振动方向向下。振动图象时间轴各点的位置也是振子振 动到对应时刻平衡位置的标志,在每个时刻振子的位移方向永远背离平衡位置,而回复力和 加速度方向永远指向平衡位置,这均与振动速度方向无关。因为振子在一个全振动过程中所通过的路程等于 4倍振幅,所以在t时间内振子振动n个周期,振子通过的路程就为 4nA。【例6】一弹簧振子做简谐运动,周期为 T,以下说法正确的是( )a.若t时刻
12、和(t + q)时刻振子运动位移的大小相等、方向相同,则 t 一定等于t的 整数倍B.若t时刻和(t + t)时刻振子运动速度的大小相等、 方向相反,则 t 一定等于T72的整数倍C.若 t = T/2 ,则在t时刻和(t + t)时刻振子运动的 加速度大小一定相等D.若 t = T/2,则在t时刻和(t+At)时刻弹簧的长度 一定相等分析:如图6- 4所示为物体做简谐运动的图象。由图象可知,在tl、t2两个时刻,振子在平衡位置同侧的同一位置,即位移大小相等,方向相同,而 t t2 t1 T ,所以选项A错误。在11时刻振子向远离平衡位置方向振动,即具有正向速度,在 t 2时刻振子向平衡位置方
13、向振动,即具有负向速度,但它们速度大小相等。而 t t2 t1 T。所以选项B错误。2因为t t4 t1 T ,振子在这两个时刻的振动情况完全相同, 所以具有相同的加速度,选项C正确。因为t t3 ti T,振子在这两个时刻位于平衡位置的两侧,即若 ti时刻弹簧处于2伸长状态,则13时刻弹簧处于压缩状态。所以选项 D错误。解答:选项C正确。说明:做简谐运动的物体具有周期性,即物体振动周期的整数倍后,物体的运动状态与 初状态完全相同。做简谐运动的物体具有对称性,即描述振动的物理量的大小(除周期和频 率外)在关于平衡位置对称的两点上都相等,但矢量的方向不一定相同。做简谐运动的物体 具有往复性,即当
14、物体振动回到同一点时,描述振动的物理量的大小(除周期和频率外)相 同,但矢量的方向不一定相同。【例7】在某介质中,质点 O在t = 0时刻由平衡位置开始向上振动。经第一次向上振动 到最大位移处。同时,产生的横波水平向右传播了 50cm。在O点右侧有一点 P,与O点相距8作 求:(1)这列横波的波速;(2)波动传播到 P点,P点刚开始振动时的速度方向; (3)从O点开始振动到P点第一次到达波峰位置所需时间?分析:由题目所给条件可知: 振源在内振动了 1/4周期,波对应向右传播1/4个波长, 从而可以确定波长和周期,进而求出波速。因为波匀速向前传播,所以波从 O点传播到P点所用时间=OP距离/波速
15、。当波传播到 P点时,O点的振动形式也传播到了 P点,因而P点 的起振方向与 O点起振方向相同,即为竖直向上, P点由平衡位置第一次到达波峰还在需要11T时间。4解答:(1)由题意知:周期T=x 4=(s)波长入=X 4=2(m).波速 v 5( m/s)T(2)P点刚开始振动时的速度方向为竖直向上。(3)OPv设所求时间为t ,则1 _ -T 1.7 (s) 4说明:题目本身并不难,但要求对机械波的形成和传播能有一个正确的理解,在多数有关机械波的高考题目中也是这样体现的。随着波的传播,振动形式和能量在传播,所以波动涉及到的每一个质点都要把振源的振动形式向外传播,即进行完全重复的振 动,其刚开
16、始的振动方向一定与振源的起振方向相同。t=时刻的图象,乙为参与波动的某一质【例8】如图6-10所示,甲为某一简谐横波在 点的振动图象。(1)两图中的AA、OC各表示什么 物理量?量值各是多少?(2)说明两图中OA B段图线的意 义?(3)该波的波速为多大?(4)画出再经过0.25s后的波动图 象和振动图象。(5)甲图中P点此刻的振动方向。分析:依据波动图象和振动图象 的物理意义来分析判断。注意振动图象和波动图象的区别与联系。解答:(1)甲图中的AA表示振幅 A和x=1m处的质点在七=时对平衡位置的位移,振幅A=,位移y=;甲图中OC表示波长,大小 =4m乙图中AA即是质点振动的振幅,又是 t
17、=时质点偏离平衡位置的位移,振幅 缶,位移y=;OC表示质点振动的周期,大小 T=。(2)甲图中的OA B段图线表示 O到B之间的各质点在t=时相对平衡位置的位移, OA间各质点正向着平衡位置运动, AB间各质点正在远离平衡位置运动。 乙图中的OA B段图线表示该质点在t=0时间内振动位移随时间变 化的情况,在0内该质点正远离平衡位置运 动,在内该质点正向平衡位置运动。(3)由v= /1可得波速 v=4 m/s=14m/s(4 )再过,波动图象向右平移x=v t = 4m=1m= /4;振动图象在原有的基础上向后延伸 T/4,图象分别如图6-11丙、丁所示(5)已知波的传播方向(或某质点的振动
18、方向)判定图象上该时刻各质点的振动方向 (或波的传播方向),常用方法如下:a.带动法:根据波动过程的特点,利用靠近波源的点带动它邻近的离波源稍远的点的特性,在被判定振动方向的点 P附近图象上靠近波源一方找一点 P,若在P点的上方,则P带动P向上运动,如图所示;若 P在P点的下方,则P带动P向下运动。b. 微平移法:将波形沿波的传播方向做微小移动 x c处质点的振幅为2A分析:因为两个波源的频率相同,振动情况也相同,而 a、b、c三点分别到两个波源的 距离之差均为0,依判断条件可知该三个点的振动都是加强的,即各点振动的振幅均为两波 振幅之和2A解答:选项CD是正确的。说明:对于稳定的干涉现象中的
19、振动始终加强的点,应理解为两列波传到该点的振动位移及振动方向完全一致,使得该点的振动剧烈,表现为该质点振动的振幅始终最大,而不是位移最大。如本题中的a点此时刻在波峰处,但过 1/4周期该点会振动到平衡位置; b点位于ac中 点,该时刻它位于平衡位置,但过 1/4周期该点会振动到波峰位置。所以 a、b、c所在这条 线为振动加强区域。对于稳定的干涉现象中的振动始终减弱的点,应理解为两列波传到该点的振动位移及振 动方向相反,使得该点的振动减弱,表现为该质点振动的振幅始终最小,而不是位移最小。【例22】关于多普勒效应的叙述,下列说法正确的是( )A.产生多普勒效应的原因是波源频率发生了变化B.产生多普
20、勒效应的原因是观察者和波源之间发生了相对运动C.甲乙两车相向行驶,两车均鸣笛,且发出的笛声频率相同,乙车中的某旅客听到的甲车笛声频率低于他听到的乙车笛声频率D.波源静止时,不论观察者是静止的还是运动的,对波长“感觉”的结果是相等的【例23】根据多普勒效应,我们知道当波源与观察者相互接近时, 观察者接收到的频率增大;如果二者远离,观察者接收到的频率减小。由实验知道遥远的星系所生成的光谱都呈现“红移”,即谱线都向红色部分移动了一段距离,由此现象可知( )A、宇宙在膨胀 B 、宇宙在收缩C、宇宙部分静止不动 D 、宇宙只发出红光光谱【例24】声纳(水声测位移)向水中发出的超声波,遇到障碍物(如鱼群、
21、潜艇、礁石等)后被反射,测出发出超声波到接收到反射波的时间及方向,即可算出障碍物的方位, ;雷达则向空中发射电磁波,遇到障碍物后被反射,同样根据发射电磁波到接收到反射波的时间及方向,即可算出障碍物的方位。超声波与电磁波相比较,下列说法正确的是( )A.超声波和电磁波在传播时,都向外传递能量,但超声波不能传递信息B.这两种波都可以在介质中传播,也可以在真空中传播C.在真空中传播的速度与在其他介质中传播的速度相比较,这两种波在空气中传播时具有较大的传播速度D.这两列波传播时,在一个周期内向前传播一个拨长,摆球的动能变 ,势能变;当摆球远离平衡位置运动时位 移变,回复力变,加速度变,加速度a与速度u
22、的方向 ,速度变,摆球的 运动性质为 ,摆球的动能变 ,势能变沙摆实验1、简谐振动2【例2】 如图6- 1所示,一个轻弹簧竖直固定在水平地面上, 上,M点为轻弹簧竖直放置时弹簧顶端位置, 在小球下落的过程中,小球以相同的动量通过 A B两点,历时1s,过B点后再经过1s,小球再一次通过 B点,小球在2s内通过的 路程为6cm 动的过程中:(3)小球由 Ep、弹性势能A B两点,由空间上的对称性可毋!* * 3 4 * 6-牛衡位置 。在ABt AO=t B(=, t BN = t NB =,所以 t O片 t Ob+ t BN= 1s,因此小球B所经过的路程,与小球从 B经A到M再返回A所经过 的路程相等。因此小球在一个周期内所通过的路程是 12cm振幅为3cm。(3) 小球由M
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1