1、焊接部韧性好的建筑用高强钢板和焊接材料焊接部韧性好的建筑用高强钢板和焊接材料实现提高大热量输入焊接部质量的JFE EWEL技术摘要JFE钢铁公司应用大热量输入焊接接头提高高韧性的技术“JFE EWEL”,开发了建筑结构用高性能590N/mm2钢板(SA440)。“JFE EWEL”是由最佳利用TiN使粗粒焊接热影响部(CGHAZ)最小,和利用BN或Ca系夹杂物使粒内组织变得细微以及实现低碳当量的合金设计组成。加之,新开发了通过有效利用从焊接金属部位(WM)扩散的B,以使焊接粘合部位(FL)附近的组织细化的焊接材料。利用该技术生产板厚达100mm的SA440钢板,经确认满足目标母材性能。并且,确
2、认大热量输入焊接接头具有优秀的韧性,扩充了大热量输入焊接接头好的建筑用高强钢板及其焊接材料的衔接。1前言最近几年,吸取阪神淡路大地震的经验教训,从耐震的观念出发,对建筑领域中的钢结构物,强烈要求提高韧性。另一方面,作为大城市改造和开发事业的一环,大量建设并规划超高层建筑。这些超高层建筑在追求大跨度的同时,汇聚商业区、写字间和酒店。为此,建筑结构变得复杂,耐震构件周边或建筑结构发生变化的楼层,在地震时时有高拉伸力作用在柱材上。因而,为防止脆性断裂,不止是柱子-梁焊接粘合部,柱材的焊接粘合部也要求具有高韧性。超高层建筑的柱材主要使用焊接了板厚超过40mm的高强度厚壁钢板的四面箱型柱。四面箱型柱的焊
3、接采用的是高效率的大热量输入焊接 埋弧焊(SAW)和非消耗式电渣焊(ESW)。在这种大热量输入焊接中,焊接热影响部(HAZ)和焊接金属部位(WM)的显微组织粗大化,不能避免传统钢中韧性低下的问题。JFE钢铁公司推进了在如此大热量输入焊接下也能提高焊接部位韧性的钢板和焊接材料的研究开发。最近,新开发了设计基准强度为440N/mm2的建筑结构用高性能590N/mm2钢材和焊接材料,完成了抗拉强度从490N/mm2到590N/mm2的大热量输入焊接部韧性好的建筑结构用钢板及其焊接材料的衔接。本文对四面箱型柱上采用了提高大热量输入焊接部韧性的“JFE EWEL”和应用了该技术的高性能590N/mm2钢
4、板(SA440-E)的母材性能,和采用了开发的SAW和ESW焊接材料的大热量输入焊接接头的性能进行阐述。2在四面箱型柱上运用大热量输入焊接和目标性能2.1采用大热量输入焊接后HAZ的组织变化和技术课题 在施工四面箱型柱时,角部焊接采用SAW,内隔板焊接采用ESW。在实际施工中的这些焊接线能量随着使用板厚的增加而增大,SAW有时超过60kJ/mm,而ESW有时超过100kJ/mm。 大热量输入接头的组织变化以内隔板焊接(ESW)为例,在图1中大致示出。HAZ由于长期滞留在超过1400 C的高温环境中,奥氏体( )晶粒明显变得粗大。在焊接后的冷却过程中,在从 的相变时,从 晶界生产粗大铁素体侧板的
5、同时,由于原 晶粒内变成含硬质岛状马氏体(M-A)的上部贝氏体组织,HAZ韧性降低。通常,提高钢板的强度和壁厚会招致增加碳当量(Ceq),大大降低HAZ韧性。因此,提高HAZ韧性必须从使HAZ粗晶粒范围最小和控制晶粒内组织这两方面考虑。2.2 目标性能 母材和焊接接头的开发目标列于表1。目标钢板性能与取得国土交通大臣材料认证的现行HBL325、HBL355、HBL385和SA440标准相同。并且,SAW和ESW的HAZ、焊接粘合部(FL)和WM的0 C夏氏吸收能(vE0)与少量热输入多层堆焊中钢结构端梁焊接粘合部要求的性能相同,目标值在平均70J以上。此外,标准符号末尾的-E代表采用了(JFE
6、 EWEL)的大热量输入焊接部高韧性钢板。表1 钢板和焊接接头的目标特性等级基底材料焊接接头vE0(J)YP(Mpa)TS(Mpa)YR()EI*(%)vE0(J)HBL325-E325-445490-61080212770HBL355-E355-475520-640802127HBL385-E385-505550-670802070SA440-E440-540590-7408020473建筑用大热量输入焊接接头的高韧性化技术3.1 “JFE EWEL”的技术元素 进行大热量输入焊接的四面箱型柱的HAZ高韧性化技术元素示于图2。该技术综合了(1) 晶粒微细化技术;(2)HAZ晶粒内组织控制技术
7、;(3)最佳成分设计和制造工艺以及利用从(4)B从WM扩散的HAZ组织控制这4个技术元素。通过将这些技术用在建筑高强钢板上,可提高大热量输入焊接部位的韧性。图2 提高大热量输入焊接接头韧性的“JFE EWEL”技术概念3.2 晶粒微细化技术 抑制 晶粒的粗大化,在高温下利用稳定的氮化物或氧化物,对最大程度减小粗粒HAZ(CGHAZ)有效。本公司着眼于工业上易控制的TiN在钢中的微细分散,研究了如何最大程度利用 晶粒微细化效果。 根据采用热石灰质所作的热力学分析和试验验证,通过控制Ti、N的量和微量添加合金,TiN的固熔温度从原来的不到1400 C提高到1450 C以上,同时,还实现了TiN的微
8、细分散。 对使用了该 晶粒细化技术的钢,利用焊接再现热循环装置,加热到相当于大热量输入焊接时HAZ温度滞后的1400 C,经80秒缓冷至1200 C后,通过急冷,冻结高温组织,调查了 晶粒状况。与传统钢比较的结果示于照片1。采用 晶粒微细化技术后, 晶粒细化到200 m以下,可望实现CGHAZ的超小化。3.3 晶粒内组织控制技术 为调查晶粒内组织对HAZ韧性的影响,采用Ceq在0.34-0.44之间变化的钢,加热到与板厚60mm,热输入为100kJ/mm的ESW相当的1400 C,进行从800 C到500 C的冷却时间( t800-500)为1000秒的焊接再现热循环,调查了再现HAZ韧性变化
9、和显微组织的关系。Ceq对再现HAZ韧性和硬度的影响示于图3。Ceq高,并且添加了大量合金元素的钢,演变成上部贝氏体组织(UB),再现HAZ韧性明显降低。由于Ceq降低,UB组织改变成铁素体+贝氏体(F+B)或铁素体+珠光体组织(F+P),再现HAZ韧性得到提高。该特性与M-A量的减少相对应。 另一方面,降低Ceq后,为适应再现HAZ显微组织变化而降低硬度,必须根据强度等级,进行考虑了接头强度的成分设计。为此,为实现HAZ组织的F+P,HBL325钢的Ceq合金设计在0.35左右,HBL385和SA440钢考虑到接头强度并旨在实现F+B,Ceq的合金设计在0.40以下。 并且,根据需要,通过将
10、BN和Ca系夹杂物作为 相变中晶粒内铁素体的核生成晶格点利用,以图实现晶粒内组织的细化。利用BN减少造成HAZ韧性降低原因之一的钢中的游离N,对提高基体的韧性也有效。另一方面,为了使Ca系夹杂物作为晶粒内铁素体相变核有效发挥其作用,必须适当控制Ca系夹杂物。为实现这一目的,要求严格管理O、S和Ca的量。通过控制本公司独立开发的硫化物控制形态指标 ACR(自动浓度比),可进一步提高韧性。3.4 最佳成分设计和制造工艺 对实施了 晶粒细化技术、控制晶粒内组织而进行低Ceq合金设计以及ACR控制的HBL325-E钢和SA440-E钢的再现HAZ韧性进行了调查。加热到1400 C,以 t800-500
11、为1000秒焊接再现热循环后的再现HAZ组织示于照片2,附注vE0和硬度。HBL325钢的HAZ组织呈现F+P;SA440钢呈现F+B,vE0分别呈现出339J和173J的高再现性HAZ韧性。 要生产开发的这些低Ceq钢板,HBL325-HBL385钢通过在轧制后的快速冷却中采用能实现理论冷却速度的超级-OLAC(再现快速冷却)的TMCP(热机械工艺),确保必要的母材性能。并且,SA440钢,采用包括 + 两相区加热淬火处理的调质热处理工艺,设定适当的热处理温度,按照严密的管理保证母材性能。3.5 利用B从WM的扩散控制HAZ组织通过使高熔点TiN微细分散在钢中实现 CGHAZ的超小化,但在超
12、过1450 C的FL附近极其狭窄的领域,无法避免TiN的固熔,仅凭母材的成分设计,组织控制存在极限。因此,着眼于B从WM的扩散,将其用于提高CGHAZ的韧性。图4模拟示出FL附近CGHAZ中TiN的固熔和B的扩散情况。TiN发生固熔的FL附近,游离N有可能对HAZ的韧性带来恶劣的影响。为此,利用B从WM的扩散,将该游离N作为BN固定以设法降低游离N,并进而将BN用于晶粒内组织控制。对Ceq0.34质量,板厚60mm的HBL325-E钢板采用开发的焊接材料,进行热输入为100kJ/mm的ESW焊接时的焊接部位的显微组织示于照片3。利用开发的焊接材料,通过B从WM的扩散,了解到传统焊接材料无法看到
13、的FL附近狭窄区域的CGHAZ组织也得到了细化。4提高焊接金属韧性的技术大热量输入SAW和ESW在WM中也发生组织变得粗大,韧性降低等问题。提高WM的韧性如图5所示,通过彻底抑制在原 晶界生成的晶界铁素体,使晶内变成微细针状铁素体实现韧性的提高。进行这样的WM组织控制,是通过对焊接材料适当添加强化淬火性元素和抑制晶界铁素体和促进晶内针状铁素体相变元素,控制WM的化学成分实现的。由于SAW和ESW焊接时母材稀释量为20-50左右,在控制WM时必须考虑钢板化学成分的影响。因而,测算适应焊接法及其热输入量的母材稀释量,进行细致的成分设计,追求适当的WM组织,焊接材料实现了对WM韧性的提高。综上所述,
14、开发了与应用了“JFE EWEL”技术的钢板匹配的SAW和ESW用焊接材料。 5大热量输入焊接接头韧性好的高强钢板(SA440-E)的开发 制造应用了“JFE EWEL”技术的钢板,对其母材性能或焊接性并且对使用了开发的焊接材料的SAW和ESW焊接接头的性能进行了研究。由于对HBL325-E、355-E和385-E的报告发表在其它几期的技报上,因而,在此以产品试制和母材以及焊接接头性能为中心,对SA440-E的实机制造结果进行阐述。5.1 钢板的化学成分和制造条件 用实际工艺熔炼开发钢,以连铸法生产板坯。代表性化学成分列于表2。含碳量定为0.08质量。根据板厚,采取改变含Ni量等考虑钢板淬火性
15、的手段追求合金成分的最佳化,使碳当量在0.4质量以下。并且,为控制HAZ组织而严格控制Ti、N和进行ACR控制。 该板坯再加热后,进行厚板轧制。轧制成板厚60mm和100mm的钢板后,进行了包括 + 的双相区加热淬火处理在内的调质热处理。表2 开发钢板(SA440-E)的化学成分厚度(mm)CSiMnPS其它Ceq(WES)*PCM*t600.080.221.580.0020.001Cu、Ni、Ti、等0.380.2260t1000.080.211.530.0080.002Cu、Ni、Ti、等0.380.22* Ceq(WES)C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14
16、* PCMC+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B5.2 钢板的机械性质 母材的机械性质列于表3。板厚60mm和100mm的钢板二者完全满足目标母材性能。板厚100mm的1/4t部位的显微组织示于照片4。通过合金设计和 + 的双相区的最佳加热淬火处理,母材的显微组织为软质相的铁素体和硬质相的回火马氏体晶格点的双相组织,其结果,板厚100mm的钢板也实现了高强度且80以下的低屈服比。韧性和延展性以及板厚方向的深冲特性都足以满足目标特性。表3 开发钢板(SA440-E)的机械特性厚度(mm)位置方向抗拉性能YP TS YR EI(N/mm2)(N/
17、mm2)(%)(%)夏氏冲击试验位置 方向 vEo(J)Z方向试验获得的断面收缩率()目标19-1001/4t C440-540590-74080201/4t C 4725(每个15)开发厚板601/4t C1/2t C470 643 73 30462 637 73 261/4t C 2211/2t C 21572(73、72、70)1001/4t C1/2t C478 660 72 28466 646 72 221/4t C 2251/2t C 18362(64、61、60)5.3 接头性能 为调查提高焊接接头韧性的效果,采用板厚60mm的开发钢板和焊接材料,利用SAW和ESW分别制作了方形
18、和内隔板焊接接头。5.3.1 焊接条件和显微组织 开坡口形状和焊接条件列于表4。SAW是按照热输入为63kJ/mm的双电极单道焊接;ESW是按照热输入为100kJ/mm的大热量输入焊接进行施工。SAW和ESW用的焊接材料如前章所述,使用的是考虑了焊接时的母材稀释产生的WM影响或FL组织控制的焊丝和焊剂。表4 评估焊接接头接头韧性的焊接条件焊接方式电极(直径)溶剂电流(A)电压(V)速度(mm/min)热输入(kJ/mm)道数槽形板厚(mm)SAW (串联电极)LTKW-55(f6.4mm)KB-55IAD230018004053180631Y型60ESWKW-60AD(f1.6mm)KE-10
19、0AD3805211.81001面板:60隔板:60 焊接接头的宏观组织和WM的显微组织示于照片5。焊道形状良好并且熔入母材的情况也非常好,未见有害的焊接缺陷。宏观组织中,不曾观察到HAZ有显著的粗大颗粒,实现了CGHAZ超小化。WM显微组织达成了(最终)目标的微细铁素体,在原 晶界未见生成粗大铁素体。ESW接头面板侧的一例HAZ显微组织示于照片6。HAZ达成(最终)目标的微细F+B组织,在FL附近极其狭窄领域可见的CGHAZ晶内组织通过钢板的ACR控制和B从WM的扩散而变得微细。5.3.2 接头韧性 SAW和ESW接头的WM、FL和HAZ3mm的夏氏冲击特性列于表5。SAW和ESW焊接部位的
20、0 C时的夏氏吸收能在WM、FL、HAZ中的任何部位都表现出70J以上的目标值。表5 焊接接头V-切口夏氏冲击试验结果接头形式位置切口位置夏氏吸收能HAZ FL WM(J) (J) (J)SAW连接板侧凸缘侧距表面2mm247* 165123* 13295ESW面板距表面2mm1/2t185* 92210* 9878100*距熔合线3mm。FL:熔合线。5.3.3 接头抗拉特性 为调查大热量输入焊接的接头强度,对SAW对接焊接头和内隔板和面板以及梁部位制作十字形焊接接头,对接头进行了抗拉试验。十字形焊接接头以板厚60mm的开发钢板为面板,将厚度减至板厚50mm的开发钢板作为隔板隔板和钢梁材料使
21、用。面板和内隔板使用ESW,面板和钢梁焊接使用热输入为1.3-2.2kJ/mm的二氧化碳多层堆焊。SAW和ESW按照与表4相同条件进行了焊接。 接头抗拉试验结果列于表6。虽然在HAZ和隔板侧的HAZ产生SAW对接接头和十字接头的断裂,但各个接头的抗拉强度为611N/mm2和658N/mm2,达到目标值590N/mm2以上。6总结 本文对SAW和ESW大热量输入焊接中,提高焊接部位韧性的HAZ组织控制技术“JFE EWEL”进行阐述的同时,介绍了采用开发钢板和焊接材料的SA440-E钢板的母材性能和大热量输入焊接接头性能。通过在建筑结构用高强钢板上采用该技术,实现了高效SAW或ESW的大热量输入
22、焊接中焊接粘合部的高韧性化。 JFE钢铁公司为适应客户的多样化需求,备有抗拉强度从490N/mm2到590N/mm2的大热量输入焊接部位韧性优秀的建筑结构用高强钢板及其SAW、ESW用焊接材料。产品清单归总于表7和表8。最后,表9列出JFE钢铁公司建筑用钢板的规格一览表。表7 具有优秀韧性的大热量输入焊接接头的高强钢板清单钢板强度划分种类符号对应标准和适用板厚490N/mm2SN490CTMC-EHBL325C-EJIS G 3136,19-40mm认证产品,40.1-100mm520N/mm2HBL355-E认证产品,40.1-100mm550N/mm2HBL385-E认证产品,19-100
23、mm590N/mm2SA440-E认证产品,19-100mm表8 具有优秀韧性的大热量输入焊接接头的焊接消耗品清单焊接材料强度划分焊丝品牌 JIS标准焊剂品牌 JIS标准SAW490-520N/mm2KW-55Z3351YS-M1KB-551ADZ3352FS-BT1550-590N/mm2KW-101B+KW-55Z3351YS-NM1+Z3351YS-M1KB-601ADZ3352FS-BT1ESW490-590N/mm2共用KW-60ADZ3353YES62KF-100或KF-100ADZ3353FS-FG3表9 JFE钢铁公司建筑结构用钢板清单标准分类种类符号标准分类种类符号建筑结构用
24、TMCP钢材。HBL352B、325C、HBL355B、355CJIS标准建筑结构用轧制钢材(JIS G 3136)SN400A,400B,400C,SN490B,490C国土交通大臣认证材料的标准建筑结构用550mm2TMCP钢材。HBL385B,385C耐火钢材标准建筑结构用耐火钢材SN400B-FR、400C-FR、SM400B-FR、400C-FR、SN490B-FR、490C-FR、SM490B-FR、490C-FR、HBL325B-FR、325C-FR、SM520B-FR、HBL355B-FR、355C-FR建筑结构用高性能590N/mm2钢材。SA440B、440CSA440B-U、440C-U建筑结构用低屈服点钢材JFE-LY100JFE-LY160JFE-LY225
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1