ImageVerifierCode 换一换
格式:DOCX , 页数:22 ,大小:30.37KB ,
资源ID:26315604      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/26315604.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(汇编语言手册教学提纲.docx)为本站会员(b****9)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

汇编语言手册教学提纲.docx

1、汇编语言手册教学提纲寄存器与存储器1. 寄存器功能. 寄存器的一般用途和专用用途. CS:IP 控制程序执行流程. SS:SP 提供堆栈栈顶单元地址. DS:BX(SI,DI) 提供数据段内单元地址. SS:BP 提供堆栈内单元地址. ES:BX(SI,DI) 提供附加段内单元地址. AX,CX,BX和CX寄存器多用于运算和暂存中间计算结果,但又专用于某些指令(查阅 指令表)。. PSW程序状态字寄存器只能通过专用指令(LAHF, SAHF)和堆栈(PUSHF,POPF)进行存取。2. 存储器分段管理. 解决了16位寄存器构成20位地址的问题. 便于程序重定位. 20位物理地址=段地址 * 1

2、6 + 偏移地址. 程序分段组织: 一般由代码段,堆栈段,数据段和附加段组成,不设置堆栈段时 则使用系统内部的堆栈。3. 堆栈. 堆栈是一种先进后出的数据结构 , 数据的存取在栈顶进行 , 数据入栈使堆栈向地址减小的方向扩展。. 堆栈常用于保存子程序调用和中断响应时的断点以及暂存数据或中间计算结果 。 .堆栈总是以字为单位存取指令系统与寻址方式1. 指令系统. 计算机提供给用户使用的机器指令集称为指令系统,大多数指令为双操作数指令。执行指令后,一般源操作数不变,目的操作数被计算结果替代。. 机器指令由CPU执行,完成某种运算或操作,8086/8088指令系统中的指令分为6类: 数据传送,算术运

3、算,逻辑运算,串操作,控制转移和处理机控制。2. 寻址方式. 寻址方式确定执行指令时获得操作数地址的方法. 分为与数据有关的寻址方式(7种)和与转移地址有关的寻址方式(4)种。. 与数据有关的寻址方式的一般用途:(1) 立即数寻址方式-将常量赋给寄存器或存储单元(2) 直接寻址方式-存取单个变量(3) 寄存器寻址方式-访问寄存器的速度快于访问存储单元的速度(4) 寄存器间接寻址方式-访问数组元素(5) 变址寻址方式(6) 基址变址寻址方式(7) 相对基址变址寻址方式 (5),(6),(7)都便于处理数组元素. 与数据有关的寻址方式中,提供地址的寄存器只能是BX,SI,DI或BP. 与转移地址有

4、关的寻址方式的一般用途:(1) 段内直接寻址-段内直接转移或子程序调用(2) 段内间接寻址-段内间接转移或子程序调用(3) 段间直接寻址-段间直接转移或子程序调用(4) 段间间接寻址-段间间接转移或子程序调用汇编程序和汇编语言1. 汇编程序. 汇编程序是将汇编语言源程序翻译成二进制代码程序的语言处理程序,翻译的过程称为汇编。2. 汇编语言. 汇编语言是用指令助记符,各种标识变量,地址,过程等的标识符书写程序的语言, 汇编语言指令与机器指令一 一对应。. 伪指令,宏指令不是由CPU执行的指令,而是由汇编程序在汇编期间处理的指令。. 伪指令指示汇编程序如何完成数据定义,存储空间分配,组织段等工作。

5、. 宏指令可简化程序并减少程序书写量。. 条件汇编伪指令的功能是确定是否汇编某段源程序,而不是实现程序分支,对未汇编的程序将不产生相应的目标代码。. 结构作为一种数据结构可将一组类型不同但有逻辑关联的数据组织在一起,便于 整体处理数据。. 记录可用于提高存储单元的利用率,将若干不足一个字节或字且有逻辑关联的信 息压缩存放在一个字节或字中。. 指令中的表达式在汇编期间计算,并且只能对常量或地址进行计算。程序设计基础1. 分支程序设计. 程序分支由条件转移指令或无条件转移指令实现. 存放若干目的转移地址或跳转指令的跳转表常用于实现多路分支. 条件转移指令只能实现偏移量为-128至+127字节范围的

6、转移. 无条件转移指令根据寻址方式可实现短转移(偏移量为-128至+127字节),段内转 移,段间转移。2. 循环程序设计. 可由循环控制指令或条件转移指令组织循环结构. 内层循环结构必须完全包含在外层循环结构内,并不能发生从循环结构外向循环 结构内的转移。3. 子程序设计. 子程序中应保护寄存器内容,并正确使用堆栈, 成对执行PUSH和POP指令,保证执行RET指令时堆栈栈顶为返回地址。. 主程序可通过寄存器,参数表,或堆栈传递参数给子程序 4. EXE文件和COM文件. 二者都是可执行文件. COM文件源程序的特点是: 第一条可执行指令的起始存放地址必须是100H,不能分段,不用定义堆栈,

7、所有过程为NEAR类型,直接用INT 20H 指令返回DOS。5. DOS功能调用与BIOS中断调用. 二者都是完成DOS系统提供给用户的输入/输出等常用功能,通过执行软中断指令 完成一次软中断服务。. DOS功能调用的中断服务程序是操作系统的一部分,存于RAM中; 而BIOS中断调用的中断服务程序存放在ROM中。输入/输出与中断系统1. 输入/输出的方式. 程序直接I/O方式: 用IN和OUT指令直接在端口级上进行I/O操作,数据传送方式 分为无条件传送方式和查询传送方式。. 中断传送方式: 由CPU响应中断请求完成中断服务。. DMA传送方式: 直接在存储器与外设之间传送数据。2. 有关中

8、断的概念. 中断、中断源、中断请求、中断服务、中断向量、中断向量表、中断响应过程、中断指令、开中断、关中断、内部中断、外部中断、可屏蔽中断、非屏蔽中断。3. 键盘I/O、显示器I/O操作. 键盘的输入操作用BIOS的16H中断调用控制,也可直接访问60H端口(数据端口), 61H端口(状态端口)检测键盘的按键操作。. 对于特殊键(如Shift , Ctrl , Alt , NumLock , ScrollLock等键)的按动情况,可以直接从来40:17H单元取得有关信息。. 显示器的图形显示可以用BIOS的10H中断调用实现,另一种速度更快的方法是直 接读写视频缓冲区。4. 打印机I/O操作由

9、 INT 17H中断调用实现, 串行通讯口操作由 INT 14H中断调用实现。CLD Clear the direction flag (set to forward direction)将方向标志置0,使si和di增量,串处理从低地址向高地址处理8088 汇编速查手册一、数据传输指令它们在存贮器和寄存器、寄存器和输入输出端口之间传送数据.1. 通用数据传送指令.MOV传送字或字节.MOVSX先符号扩展,再传送.MOVZX先零扩展,再传送.PUSH把字压入堆栈.POP把字弹出堆栈.PUSHA把AX,CX,DX,BX,SP,BP,SI,DI依次压入堆栈.POPA把DI,SI,BP,SP,BX,D

10、X,CX,AX依次弹出堆栈.PUSHAD把EAX,ECX,EDX, EBX,ESP,EBP,ESI,EDI依次压入堆栈.POPAD把EDI,ESI,EBP,ESP,EBX,EDX, ECX,EAX依次弹出堆栈.BSWAP交换32位寄存器里字节的顺序XCHG交换字或字节.( 至少有一个操作数为寄存器,段寄存器不可作为操作数)CMPXCHG 比较并交换操作数.( 第二个操作数必须为累加器AL/AX/EAX )XADD先交换再累加.( 结果在第一个操作数里 )XLAT字节查表转换. BX 指向一张 256 字节的表的起点, AL 为表的索引值 (0-255,即0-FFH); 返回 AL 为查表结果.

11、 ( BX+AL-AL )2. 输入输出端口传送指令.INI/O端口输入. ( 语法: IN 累加器, 端口号DX )OUTI/O端口输出. ( 语法: OUT 端口号DX,累加器 )输入输出端口由立即方式指定时, 其范围是 0-255; 由寄存器 DX 指定时,其范围是 0-65535.3. 目的地址传送指令.LEA装入有效地址. 例: LEA DX,string;把偏移地址存到DX.LDS传送目标指针,把指针内容装入DS.例: LDS SI,string;把段地址:偏移地址存到DS:SI.LES传送目标指针,把指针内容装入ES.例: LES DI,string;把段地址:偏移地址存到ES:

12、DI.LFS传送目标指针,把指针内容装入FS.例: LFS DI,string;把段地址:偏移地址存到FS:DI.LGS传送目标指针,把指针内容装入GS.例: LGS DI,string;把段地址:偏移地址存到GS:DI.LSS传送目标指针,把指针内容装入SS.例: LSS DI,string;把段地址:偏移地址存到SS:DI.4. 标志传送指令.LAHF标志寄存器传送,把标志装入AH.SAHF标志寄存器传送,把 AH内容装入标志寄存器.PUSHF标志入栈.POPF标志出栈.PUSHD32位标志入栈.POPD32位标志出栈.二、算术运算指令ADD 加法.ADC带进位加法.INC加 1.AAA加

13、法的ASCII码调整.DAA加法的十进制调整.SUB减法.SBB带借位减法.DEC减 1.NEC求反(以 0 减之).CMP比较.(两操作数作减法,仅修改标志位,不回送结果).AAS减法的 ASCII码调整.DAS减法的十进制调整.MUL无符号乘法.IMUL整数乘法.以上两条,结果回送AH和AL(字节运算),或DX和AX(字运算),AAM乘法的ASCII码调整.DIV无符号除法.IDIV整数除法.以上两条,结果回送:商回送AL,余数回送AH, (字节运算);或商回送AX,余数回送DX, (字运算).AAD除法的ASCII码调整.CBW字节转换为字. (把AL中字节的符号扩展到AH中去)CWD字

14、转换为双字. (把AX中的字的符号扩展到DX中去)CWDE字转换为双字. (把AX中的字符号扩展到EAX中去)CDQ双字扩展.(把EAX中的字的符号扩展到EDX中去)三、逻辑运算指令AND与运算.OR或运算.XOR异或运算.NOT取反.TEST测试.(两操作数作与运算,仅修改标志位,不回送结果).SHL逻辑左移.SAL算术左移.(=SHL)SHR逻辑右移.SAR算术右移.(=SHR)ROL循环左移.ROR循环右移.RCL通过进位的循环左移.RCR通过进位的循环右移.以上八种移位指令,其移位次数可达255次.移位一次时, 可直接用操作码.如 SHL AX,1.移位1次时, 则由寄存器CL给出移位

15、次数.如MOV CL,04SHL AX,CL四、串指令DS:SI源串段寄存器:源串变址.ES:DI目标串段寄存器:目标串变址.CX重复次数计数器.AL/AX扫描值.D标志0表示重复操作中SI和DI应自动增量; 1表示应自动减量.Z标志用来控制扫描或比较操作的结束.MOVS串传送.( MOVSB传送字符.MOVSW传送字.MOVSD传送双字. )CMPS串比较.( CMPSB比较字符.CMPSW比较字. )SCAS串扫描.把AL或AX的内容与目标串作比较,比较结果反映在标志位.LODS装入串.把源串中的元素(字或字节)逐一装入AL或AX中.( LODSB传送字符.LODSW传送字.LODSD传送

16、双字. )STOS保存串. 是LODS的逆过程.REP当CX/ECX0时重复.REPE/REPZ当ZF=1或比较结果相等,且 CX/ECX0时重复.REPNE/REPNZ当ZF=0或比较结果不相等,且 CX/ECX0时重复.REPC当CF=1且CX/ECX0时重复.REPNC当CF=0且CX/ECX0时重复.五、程序转移指令1无条件转移指令 (长转移)JMP无条件转移指令CALL过程调用 RET/RETF过程返回.2条件转移指令 (短转移,-128到+127的距离内)( 当且仅当(SF XOR OF)=1时,OP1循环控制指令(短转移)LOOPCX不为零时循环.LOOPE/LOOPZCX不为零

17、且标志Z=1时循环.LOOPNE/LOOPNZCX 不为零且标志Z=0时循环.JCXZCX为零时转移.JECXZECX 为零时转移.4中断指令INT中断指令INTO 溢出中断IRET中断返回5处理器控制指令 HLT处理器暂停, 直到出现中断或复位信号才继续.WAIT当芯片引线TEST为高电平时使CPU进入等待状态.ESC转换到外处理器.LOCK封锁总线.NOP空操作.STC置进位标志位.CLC清进位标志位.CMC进位标志取反.STD置方向标志位.CLD清方向标志位.STI置中断允许位.CLI清中断允许位.六、伪指令DW定义字(2字节).PROC定义过程.ENDP过程结束.SEGMENT 定义段

18、.ASSUME建立段寄存器寻址.ENDS段结束. END程序结束.汇编语言基础知识汇编语言和CPU以及内存,端口等硬件知识是连在一起的. 这也是为什么汇编语言没有通用性的原因. 下面简单讲讲基本知识(针对INTEL x86及其兼容机)=x86汇编语言的指令,其操作对象是CPU上的寄存器,系统内存,或者立即数. 有些指令表面上没有操作数, 或者看上去缺少操作数, 其实该指令有内定的操作对象, 比如push指令, 一定是对SS:ESP指定的内存操作, 而cdq的操作对象一定是eax / edx. 在汇编语言中,寄存器用名字来访问. CPU 寄存器有好几类, 分别有不同的用处:1. 通用寄存器:EA

19、X,EBX,ECX,EDX,ESI,EDI,EBP,ESP(这个虽然通用,但很少被用做除了堆栈指针外的用途)这些32位可以被用作多种用途,但每一个都有专长. EAX 是累加器(accumulator), 它是很多加法乘法指令的缺省寄存器. EBX 是基地址(base)寄存器, 在内存寻址时存放基地址. ECX 是计数器(counter), 是重复(REP)前缀指令和LOOP指令的内定计数器. EDX是.(忘了.哈哈)但它总是被用来放整数除法产生的余数. 这4个寄存器的低16位可以被单独访问,分别用AX,BX,CX和DX. AX又可以单独访问低8位(AL)和高8位(AH), BX,CX,DX也类

20、似. 函数的返回值经常被放在EAX中.ESI/EDI分别叫做源/目标索引寄存器(source/destination index),因为在很多字符串操作指令中, DS:ESI指向源串,而ES:EDI指向目标串. EBP是基址指针(BASE POINTER), 它最经常被用作高级语言函数调用的框架指针(frame pointer). 在破解的时候,经常可以看见一个标准的函数起始代码:push ebp ;保存当前ebpmov ebp,esp ;EBP设为当前堆栈指针sub esp, xxx ;预留xxx字节给函数临时变量.这样一来,EBP 构成了该函数的一个框架, 在EBP上方分别是原来的EBP,

21、 返回地址和参数. EBP下方则是临时变量. 函数返回时作 mov esp,ebp/pop ebp/ret 即可.ESP 专门用作堆栈指针.2. 段寄存器:CS(Code Segment,代码段) 指定当前执行的代码段. EIP (Instruction pointer, 指令指针)则指向该段中一个具体的指令. CS:EIP指向哪个指令, CPU 就执行它. 一般只能用jmp, ret, jnz, call 等指令来改变程序流程,而不能直接对它们赋值.DS(DATA SEGMENT, 数据段) 指定一个数据段. 注意:在当前的计算机系统中, 代码和数据没有本质差别, 都是一串二进制数, 区别只

22、在于你如何用它. 例如, CS 制定的段总是被用作代码, 一般不能通过CS指定的地址去修改该段. 然而,你可以为同一个段申请一个数据段描述符别名而通过DS来访问/修改. 自修改代码的程序常如此做.ES,FS,GS 是辅助的段寄存器, 指定附加的数据段.SS(STACK SEGMENT)指定当前堆栈段. ESP 则指出该段中当前的堆栈顶. 所有push/pop 系列指令都只对SS:ESP指出的地址进行操作.3. 标志寄存器(EFLAGS):该寄存器有32位,组合了各个系统标志. EFLAGS一般不作为整体访问, 而只对单一的标志位感兴趣. 常用的标志有: 进位标志C(CARRY), 在加法产生进

23、位或减法有借位时置1, 否则为0.零标志Z(ZERO), 若运算结果为0则置1, 否则为0符号位S(SIGN), 若运算结果的最高位置1, 则该位也置1. 溢出标志O(OVERFLOW), 若(带符号)运算结果超出可表示范围, 则置1. JXX 系列指令就是根据这些标志来决定是否要跳转, 从而实现条件分枝. 要注意,很多JXX 指令是等价的, 对应相同的机器码. 例如, JE 和JZ 是一样的,都是当Z=1是跳转. 只有JMP 是无条件跳转. JXX 指令分为两组, 分别用于无符号操作和带符号操作. JXX 后面的XX 有如下字母:无符号操作: 带符号操作:A = ABOVE, 表示高于 G

24、= GREATER, 表示大于B = BELOW, 表示低于 L = LESS, 表示小于C = CARRY, 表示进位或借位 O = OVERFLOW, 表示溢出S = SIGN, 表示负通用符号:E = EQUAL 表示等于, 等价于Z (ZERO)N = NOT 表示非, 即标志没有置位. 如JNZ 如果Z没有置位则跳转Z = ZERO, 与E同.如果仔细想一想,就会发现 JA = JNBE, JAE = JNB, JBE = JNA, JG = JNLE, JGE= JNL, JL= JNGE, .4. 端口端口是直接和外部设备通讯的地方。外设接入系统后,系统就会把外设的数据接口映射到

25、特定的端口地址空间,这样,从该端口读入数据就是从外设读入数据,而向外设写入数据就是向端口写入数据。当然这一切都必须遵循外设的工作方式。端口的地址空间与内存地址空间无关,系统总共提供对64K个8位端口的访问,编号0-65535. 相邻的8位端口可以组成成一个16位端口,相邻的16位端口可以组成一个32位端口。端口输入输出由指令IN,OUT,INS和OUTS实现,具体可参考汇编语言书籍。汇编指令的操作数可以是内存中的数据, 如何让程序从内存中正确取得所需要的数据就是对内存的寻址。 INTEL 的CPU 可以工作在两种寻址模式:实模式和保护模式。 前者已经过时,就不讲了, WINDOWS 现在是32

26、位保护模式的系统, PE 文件就基本是运行在一个 32位线性地址空间, 所以这里就只介绍32位线性空间的寻址方式。 其实线性地址的概念是很直观的, 就想象一系列字节排成一长队,第一个字节编号为0, 第二个编号位1, 。 一直到4294967295(十六进制FFFFFFFF,这是32位二进制数所能表达的最大值了)。 这已经有4GB的容量! 足够容纳一个程序所有的代码和数据。 当然, 这并不表示你的机器有那么多内存。 物理内存的管理和分配是很复杂的内容, 初学者不必在意, 总之, 从程序本身的角度看, 就好象是在那么大的内存中。 在INTEL系统中, 内存地址总是由段选择符:有效地址的方式给出。段

27、选择符(SELECTOR)存放在某一个段寄存器中, 有效地址则可由不同的方式给出。 段选择符通过检索段描述符确定段的起始地址, 长度(又称段限制), 粒度, 存取权限, 访问性质等。 先不用深究这些, 只要知道段选择符可以确定段的性质就行了。 一旦由选择符确定了段, 有效地址相对于段的基地址开始算。 比如由选择符1A7选择的数据段, 其基地址是400000, 把1A7 装入DS中, 就确定使用该数据段。 DS:0 就指向线性地址400000。 DS:1F5278 就指向线性地址5E5278。 我们在一般情况下, 看不到也不需要看到段的起始地址, 只需要关心在该段中的有效地址就行了。 在32位系统中, 有效地址也是由32位数字表示, 就是说, 只要有一个段就足以涵盖4GB线性地址空间, 为什么还要有不同的段选择符呢? 正如前面所说的, 这是为了对数据进行不同性质的访问。 非法的访问将产生异常中断, 而这正是保护模式的核心内容, 是构造优先级和多任务系统的基础。 这里有涉及到很多深层的东西, 初学者先可不必理会。 有效地址的计算方式是: 基址+间址*比例因子+偏移量。 这些量都是指段内的相对于段起始地址的量度, 和段的起始地址没有关系。 比如, 基址=100000, 间址=400, 比

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1