ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:401.13KB ,
资源ID:26277296      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/26277296.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(完整word版基于Matlab的瑞利信道仿真.docx)为本站会员(b****9)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

完整word版基于Matlab的瑞利信道仿真.docx

1、完整word版基于Matlab的瑞利信道仿真 移动通信期中论文论文题目:基于Matlab的瑞利信道仿真Title:Rayleigh fading simulation based on Matlab学院:信息学院专业:通信工程姓名:888 20111060xxx8888 20111060xxx8888 20111060xxx指导老师:申东娅2014年6月5日 摘要 研究信道的衰落特性及其仿真实现方法对通信系统的设计与性能分析具有重要意义。本文首先简述瑞利衰落信道,然后说明其仿真方法,主要为均方误差法(MSEM)和精确多普勒扩展法(MEDS)两种,并基于Matlab进行瑞利衰落信道的仿真。给出了

2、衰落信号的仿真信号和分析结果,证明了仿真模型与理论曲线匹配度高,可以良好的模拟无线衰落信道。关键字 瑞利信道 Matlab 精确多普勒扩展法 均方误差法Abstract Study on the fading characteristics and simulation methods for communication system design and performance analysis has important significance. This paper firstly describes the Rayleigh fading channel, and then the

3、simulation method,mainly for the mean square error (MSEM) and the precision of Doppler expansion method (MEDS) two, based on the simulation of Matlab Rayleigh fading channel.The fading signal simulation and analysis results are given, prove that the simulation model and the theoretical curve matchin

4、g degree is high, can be a good simulation of wireless fading channel.Keyword Rayleigh fading Matlab MSEM MEDS引言由于多径效应和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,即时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着重要的影响,而多径信道的包络统计特性则是我们研究的焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布等。在此专门针对服从瑞利分布的多径信道进行模拟仿真,进一步加深对多径信道特性的了解。一 仿

5、真原理1.1 瑞利分布简介(1)环境条件:通常在离基站较远、反射物较多的地区,发射机和接收机之间没有直射波路径,存在大量反射波;到达接收天线的方向角随机且在(02)均匀分布;各反射波的幅度和相位都统计独立。(2)幅度、相位的分布特性:包络 r 服从瑞利分布,在02内服从均匀分布。瑞利分布的概率分布密度如图1所示:图1 瑞利分布的概率分布密度 1.2 多径衰落信道基本模型根据ITU-RM.1125标准,离散多径衰落信道模型为其中复路径衰落,服从瑞利分布; 是多径时延。多径衰落信道模型框图如图2所示:多径衰落信道模型框图1.3 产生服从瑞利分布的路径衰落r(t)利用窄带高斯过程的特性,其振幅服从瑞

6、利分布,即 上式中,、分别为窄带高斯过程的同相和正交支路的基带信号。首先产生独立的复高斯噪声的样本,并经过FFT后形成频域的样本,然后与S(f)开方后的值相乘,以获得满足多普勒频谱特性要求的信号,经IFFT后变换成时域波形,再经过平方,将两路的信号相加并进行开方运算后,形成瑞利衰落的信号r(t)。如下图3所示:瑞利衰落的产生示意图其中, 1.4 均方误差法(MSEM)计算参数的表达式为,参数表达式如下:式中,为第一类零阶贝塞尔函数。是表示一个合适的时间区间,由确定。1.5 精确多普勒扩展法(MEDS)这个方法是专门为经常使用Jakes功率谱密度而开发的,方法简单,并且它的高性能和可以得到,并与

7、Jakes功率谱密度相应的自相关函数的准最优近似。计算参数表达式为:二 MATLAB仿真结果精确多普勒扩展法(MEDS)均方误差法(MSEM)三 总结本文讨论了瑞利分布的多径信道,研究了其MATLAB仿真过程,选取均方误差法(MSEM)和精确多普勒扩展法(MEDS)2种fi和ci的计算方法进行瑞利信道时域仿真,根据仿真信号得到仿真的瑞利概率密度函数(PDF),累积分布函数(CDF)以及多普勒功率谱,并分析了仿真信号参数值与理论值之间的差异,可得出仿真信号在误差允许范围内是接近理论值的结论。参考文献1 无线通信原理与运用,Theodore S. Rappaport著,电子工业出版社,2009.2

8、 MATLAB教程,张志涌、杨祖樱编著,北京航空航天大学出版社,2010附录精确多普勒扩展法(MEDS)clc;clear;fc=2*109;v=110;c=300*106; fm=fc*(v*103/3600)/c;N =128;gap = 2*fm/(N-1); T = 1/gap;sf0 = 1.5/(pi*fm); for n = 1:(N-2)/2 sf(n) = 1.5/(pi*fm*sqrt(1-(n*gap/fm)2); end SEf = fliplr(sf),sf0,sf; figure(1); plot(SEf); title(多普勒功率谱);xlabel(f);ylab

9、el(size);grid;x1=randn(1,N);x2=randn(1,N);x=x1+1i*x2;pha=2*pi*rand(1,N);i= linspace(1,N,N);sigma=sqrt(var(x)/2);syms t;tt=linspace(0,0.35,N);ci=sigma*(2/N).0.5;fi=fm.*sin(pi/(2*N)*(i-1/2);ph=2.*pi.*fi*t+pha;Tc1=ci.*cos(ph);Ts1=ci.*sin(ph);Tc2=sum(Tc1);Ts2=sum(Ts1);Tc=subs(Tc2,t,tt);Ts=subs(Ts2,t,tt)

10、;st=Tc.*cos(2*pi.*tt)-Ts.*sin(2*pi.*tt);rt = sqrt(real(Tc).2 + real(Ts).2);% rt=sqrt(Tc.2+Ts.2)rt_db=20*log10(rt);st_db=20*log10(st);figure(2); plot(tt,rt_db);% axis(0 20 0 100);title(瑞利衰落信道);xlabel(t);ylabel(dB);grid;figure(3)n=0:0.1:10;r=sqrt(sigma*(x1.2+x2.2); h=hist(r,n);fr_approx=h/(0.1*sum(h);

11、 pijun=sum(r)/N; junfanghe=(r-pijun).2;junfang=sum(junfanghe)/N;u=0; cdf=raylcdf(n,sigma);subplot(3,1,1); plot(n,cdf);title(CDF); pdf=raylpdf(n,sigma);subplot(3,1,2); plot(n,pdf);title(PDF); hold on; plot(n,fr_approx,ko); axis(0 8 0 1) wucha=fr_approx-pdf; subplot(3,1,3); plot(n,wucha); title(误差); R

12、=raylrnd(sigma,1,1000); E=mean(R); D=cov(R); figure(4)plot(Tc,.);title(时域高斯信号(Tc);xlabel(N);ylabel(正交信号);grid;figure(5)plot(Ts,.);title(时域高斯信号(Ts);xlabel(N);ylabel(正交信号);grid;均方误差法(MSEM)clc;clear;fc=2*109;v=110;c=300*106; fm=fc*(v*103/3600)/c;N =128;gap = 2*fm/(N-1); T = 1/gap;sf0 = 1.5/(pi*fm); for

13、 n = 1:(N-2)/2 sf(n) = 1.5/(pi*fm*sqrt(1-(n*gap/fm)2); end SEf = fliplr(sf),sf0,sf; figure(1); plot(SEf); title(多普勒功率谱);xlabel(f);ylabel(size);grid;x1=randn(1,N);x2=randn(1,N);x=x1+1i*x2;pha=2*pi*rand(1,N);i= linspace(1,N,N);sigma=sqrt(var(x)/2);syms t;tt=linspace(0,0.35,N);J0=besselj(0,2*pi*fm*tt);

14、for i=1:N fi(i)=(2*i-1)*fm./(2*N);endci=zeros(size(fi); for i=1:N ci(i)=2*sigma*sqrt(trapz(tt,J0.*cos(2*pi*fi(i)*tt)/T);end;ph=2.*pi.*fi*t+pha;Tc1=ci.*cos(ph);Ts1=ci.*sin(ph);Tc2=sum(Tc1);Ts2=sum(Ts1);Tc=subs(Tc2,t,tt);Ts=subs(Ts2,t,tt);st=Tc.*cos(2*pi.*tt)-Ts.*sin(2*pi.*tt);rt = sqrt(real(Tc).2 + r

15、eal(Ts).2);% rt=sqrt(Tc.2+Ts.2)rt_db=20*log10(rt);st_db=20*log10(st);figure(2); plot(tt,rt_db);% axis(0 20 0 100);title(瑞利衰落信道);xlabel(t);ylabel(dB);grid;figure(3)n=0:0.1:10;r=sqrt(sigma*(x1.2+x2.2); h=hist(r,n);fr_approx=h/(0.1*sum(h); pijun=sum(r)/N; junfanghe=(r-pijun).2;junfang=sum(junfanghe)/N;

16、u=0; cdf=raylcdf(n,sigma);subplot(3,1,1); plot(n,cdf);title(CDF); pdf=raylpdf(n,sigma);subplot(3,1,2); plot(n,pdf);title(PDF); hold on; plot(n,fr_approx,ko); axis(0 8 0 1) wucha=fr_approx-pdf; subplot(3,1,3); plot(n,wucha); title(误差); R=raylrnd(sigma,1,1000); E=mean(R); D=cov(R); figure(4)plot(Tc,.);title(时域高斯信号(Tc);xlabel(N);ylabel(正交信号);grid;figure(5)plot(Ts,.);title(时域高斯信号(Ts);xlabel(N);ylabel(正交信号);grid;

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1