ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:17.82KB ,
资源ID:26134086      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/26134086.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(教资面试小学数学教案模板.docx)为本站会员(b****9)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

教资面试小学数学教案模板.docx

1、教资面试小学数学教案模板教资面试小学数学教案模板第1篇:高中数学教资面试教案高中数学教案精选高中数学教资面试教案两篇第一篇函数的单调性1.题目:函数的单调性2.内容:3.基本要求(1)试讲时间约10分钟;(2)创设问题进行导入,建立与已学知识之间的联系;(3)采用恰当的教学方法,让学生直观感受数形结合思想。4考核目标:教学设计,教学方法,教学实施。课时:1课时课型:新授课教学目标:1、知识与技能:从形与数两方面理解单调性的概念,初步学会利用函数图象和单调性定义判断、证明函数单调性的方法。2、过程与方法:通过对函数单调性定义的探究,提高观察、归纳、抽象的能 力和语言表达能力;通过对函数单调性的证

2、明,提高推理论证能力,体验数形结合思想方法。3、情感态度价值观:通过知识的探究过程养成细心观察、认真分析、严谨论证的良好思维习惯;感受用辩证的观点思考问题。教学重点:函数单调性的概念形成和初步运用。教学难点:函数单调性的概念形成。教学过程:(一)创设情境,导入新课教师活动:分别作出函数y=2x,y=-2x和y=x2+1的图象,并且观察函数变化规律,描述前两个图象后,明确这两种变化规律分别称为增函数和减函数。 然后提出两个问题:问题一:二次函数是增函数还是减函数?问题二:能否用自己的理解说说什么是增函数,什么是减函数?学生活动:观察图象,利用初中的函数增减性质进行描述,y=2x的图象自变量x在实

3、数集变化时,y随x增大而增大,y=-2x的图象自变量x在实数集变化时,y随x增大而减小。在此基础上描述y=x2+1在(-,0上y随x增大而减小,在(0,+)上y随x增大而增大。理解单调性是函数的局部性质,在一个区间里,y随x增大而增大,则是增函数;y随x增大而减小就是减函数。设计意图:数学课程标准中提出“通过已学过的函数特别是二次函数理解函数的单调性”,因此在本环节的设计上,从学生熟知的一次函数和二次函数入手,从初中对函数增减性的认识过渡到对函数单调性的直观感受。通过一次函数认识单调性,再通过二次函数认识单调性是局部性质,进而完善感性认识。(二)初步探索,形成概念教师活动:(以y=x2+1在

4、(0,+)上单调性为例)让学生理解如何用精确的数学语言(随着、增大、任取)来描述函数的单调性,进而得到增(减)函数的定义。并进一步提出如何判断的问题。1 / 4高中数学教案学生活动:通过交流、提出见解,提出质疑,相互补充理解函数定义的解释,讨论表示大小关系时,理解如何取值,明白任取的意义。设计意图:通过启发式提问,实现学生从“图形语言”到“文字语言”到“符号语言”认识函数的单调性,实现“形”到“数”的转换。(三)概念深化,延伸扩展教师活动:提出下面这个问题:能否说f(x)=在它的定义域上是减函数?从这个例子能得到什么结论?并给出例子进行说明:进一步提问:函数在定义域内的两个区间A,B上都是增(

5、减)函数,何时函数在AB上也是增(减)函数,最后再一次回归定义,强调任意性。学生活动:思考、讨论,提出自己观点,并提出反例,如x1=-1,x2=1,进而得出结论:函数在定义域内的两个区间A,B上都是增(减)函数,函数在AB上不一定是增(减)函数将函数图象进行变形(如x设计意图:通过上面的问题,学生已经从描述性语言过渡到严谨的数学语言。而对严谨的数学语言学生还缺乏准确理解,因此在这里通过问题深入研讨加深学生对单调性概念的理解。(四)证明探究,应用定义教师活动:展示例题例1:证明函数在(0,+)上是增函数证明:任取且函数在(0,+)上是增函数。进一步提问:如果把(0,+)条件去掉,如何解这道题?要

6、求学生课后思考。学生活动:根据单调性定义进行证明、讨论,规范出证明步骤:设元、作差、变形、断号、定论,理解根据定义进行判断,体会判断可转化成证明并完成课后思 考题。设计意图:本环节是对函数单调性概念的准确应用,本题采用前面出现过的函数,一方面希望学生体会到函数图象和数学语言从不同角度刻画概念,另一方面避免学生遇到障碍,而是把注意力都集中在单调性定义的应用上。课标中指出“形式化是数学的基本特征之一,但不能仅限于形式化的表达。高中课程强调返璞归真”因此本题不再从证明角度,而是让学生再次从定义出发,寻求方法,并体会转化思想。(五)小结评价,作业创新教师活动:从知识、方法两个方面引导学生进行总结,留出

7、如下的课后作业(1、2、4必做,3选做):1、证明:函数在区间0,+)上是增函数。2、课上思考题3、求函数的单调区间4、思考P46 探索与研究学生活动:回顾函数单调性定义的探究过程、证明、判断函数单调性的方法步骤和数学思想方法,完成课后作业。设计意图:使学生对单调性概念的发生与发展过程有清晰的认识,体会到数学概念形成的主要三个阶段:直观感受、文字描述和严格定义,并且作业实现分层,满足学生需求。六、板书设计第二篇函数的奇偶性1题目:函数的奇偶性2内容:2 / 4高中数学教案3基本要求:(1)试讲时间约10分钟;(2)通过问题设计,联系学生已有知识经验探索新知识;(3)设计一些基础性例题,以帮助学

8、生理解函数奇偶性的主要特征。4考核目标:问题设计,知识归纳,教学实施。教学设计课时:1课时课型:新授课教学目标:1、知识与技能目标:理解函数的奇偶性及其几何意义。2、过程与方法目标:经历从图形直观感知到代数抽象概括,从特殊到一般的概念形成过程,培养学生观察、抽象的能力。3、情感、态度与价值观目标:通过自主探索,体会数形结合的思想,感受数学的对称美。教学重点:理解函数的奇偶性及其几何意义。教学难点:判断函数奇偶性的方法。教学准备:多媒体教学过程:一、图片展示,引入新课多媒体展示喜字、蝴蝶、扑克牌、交通标志四幅图片,请学生观察这些图片具有什么样的共同特征。通过观察,老师适当引导,学生能够发现前两幅

9、图是轴对称的,后两幅图是中心对称的。继续追问数学中这样的对称,请学生举例说明。由于前几节课都在学习函数,会有部分学生想到有些函数的图像是对称的。引入课题:今天我们一起来研究图像具有对称特征的函数的性质奇偶性二、合作探索,学习新知1.观察下列函数的图像:说明图像有什么样的特点。思考1:这两个函数的图像有何共同特征?思考2:对于上述两个函数,f(1)与f(-1),f(2)与f(-2),f(a)与f(-a)有什么关系?一般地,若函数y=f(x)的图象关于y轴对称,当自变量x任取定义域中的一对相反数时,对应的函数值相等。即f(-x)=f(x) 思考3:怎样定义偶函数?学生先进行独立思考,然后小组讨论形

10、成小组结论,最后展示本组讨论结果。师生互动将学生得到的定义进行补充完善最终得到精确的偶函数的定义:设函数f(x)的定义域为D,如果对D内的任意一个数X,都有,且,则这个函数叫做偶函数。 练习:判断下列函数是否为偶函数?(口答)2.观察下面两个函数的图像,回答以下问题。问题1:观察图像,从对称的角度思考,它们有什么共同特征?问题2:分别求当自变量x=1, 2时的函数值,从中你能发现什么规律?问题3:是否对于定义域内所有的x,都有类似的情况?问题4:类比偶函数的定义给出奇函数的定义。3 / 4高中数学教案学生先进行独立思考后,小组内进行交流,形成小组最后结论,最终展示本组成果。小组代表展示结果后,

11、师生互动得出奇函数的定义:设函数f(x)的定义域为D,如果对D内的任意一个数X,都有,且,则这个函数叫做偶函数。 练习:判断下列函数是否为偶函数?(口答)3.强化定义,深化内涵对奇函数、偶函数定义的说明:(1)如果一个函数f(x)是奇函数或偶函数,那么我们就说函数f(x),具有奇偶性。(2)函数具有奇偶性的前提是:定义域关于原点对称。(3)若f(x)为奇函数,则f(-x)=f(x)成立;若f(x)为偶函数,则f(-x)=f(x)成立。三、讲练结合,巩固提升例1.利用定义判断下列函数的奇偶性小结:用定义判断函数奇偶性的步骤: :(1)先求定义域,看是否关于原点对称;(2)再判断f(x)与f(x)的关系;(3)若f(-x)=f(x)则f(x)是偶函数;若f(-x)=-f(x),则f(x)是奇函数。例题2:利用定义判断下列函数的奇偶性四、总结升华师生一起回顾函数奇偶性的定义,图像性质,已经如何判断一个函数的奇偶性。五、布置作业1.教材42页习题2.设f(x)是定义在R上的奇函数,当x0时,f(x)=2x+1,求x板书设计:函数的奇偶性偶函数:奇函数:判断函数奇偶性步骤: 一看二找三判断4 / 4第2篇:教资面试初中数学教案教资面试初中数学教案

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1