ImageVerifierCode 换一换
格式:WPS , 页数:18 ,大小:1,011.50KB ,
资源ID:2611168      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/2611168.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(论坛牛人谈关于RCD钳位电路中二极管D的选择.wps)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

论坛牛人谈关于RCD钳位电路中二极管D的选择.wps

1、论坛牛人谈关于 RCD 钳位电路中二极管 D 的选择论坛牛人谈关于 RCD 钳位电路中二极管 D 的选择2013-08-30 13:52 文章来源:电源网 有309人阅读过 在电源网论坛里,就存在这样一些人,他们时常能 DIY 出被网友们称之为的经典设计,出于大家能够共同学习的目的,小编抓住了难得的机会,整理了这些经典帖,供分享学习。本文设计分享来自“mko145”的精华帖。-小编语本文设计分享来自“mko145”的精华帖。-小编语前几天写了个贴子,讨论了一下 RCD 公式计算出的电阻值与实际的参数为什么相差很大。(有兴趣的朋友请参看:谈谈 RCD 的计算结果为何与实验参数出入很大)其中有朋友

2、提出讨论一下“RCD 线路中的二极管 D 的选择问题”。对于二极管的选择,相信大多数工程师都很有经验。坛子里相关的讨论不算多(当然这也不是个重要的问题)。后来做了些实验,在这和大家分享一下,有兴趣的朋友请一起讨论。在上个帖子里谈到:计算误差大的其中一个原因是二极管的开关速度不够快(即便是快速恢复二极管)。各大 IC 公司的公式大都是基于这样一个假设即二极管是理想的开关,正向导通时间是0,反向恢复时间也是0。于是由初级漏感而引起的所有的能耗都消耗在了电阻 Rsn 上。由这个公式计算出来的电阻数值比起实际的参数通常要小很多。大家可能会有这样的经验-选择越慢的二极管(反向恢复时间长),则这个计算的误

3、差就越大。比如说在谈谈 RCD 的计算结果为何与实验参数出入很大 中的例子里,用的是反向恢复实际只有75nS 的超快恢复二极管 UF4007。假如用恢复速度慢些的二极管,那么情况会大不一样了。现在有的线路中使用开关速度很慢1N4007。在之前的帖子中,我没有提到用慢速二极管而造成的计算误差,是因为如果使用1N4007,那么就不用算了。因为误差会大到“计算本身完全失去了意义”。给大家一个直观的例子-在上个帖子的例子中计算出的电阻数值是33K,如果二极管用1N4007的话,实际上270K 的电阻就可以了。说起二极管的开关特性,大家都会想到“二极管的反向恢复时间”。这也是衡量一个二极管开关速度的主要

4、参数。大家对此都很熟悉。不过,下面我想先谈谈二极管的正向恢复时间:对于“二极管正向恢复时间”,好像关心的人很少。电源网的坛子里似乎也没有相关的帖子。相反,在“世纪电源”的论坛里,关于这个话题曾经有过“热闹的”辩论。有人认为“正向恢复只是书本上一个概念”。让我们先来看一下反激电源 MOS 管 Vds 的波形。一般的 RCD 计算的资料中的图形是这样的:上面的波形是理想的样子,把二极管看成了一个理想的开关。很多讲 RCD 计算的 AN 里都是这样的。而实际上的波形会有些不同,比如说我之前的帖子中的例子。波形是下面的样子:实际的波形非但远没有理想的波形漂亮,还有一个很高的尖峰。这个尖峰超过50-60

5、V。单凭这一点计算公式就有了很大误差了。下面的图中,蓝色的是二极管 UF4007的正极波形,黄色是二极管的负极:由图中看到二极管在 Vds 上升后,并没有能很快地导通。在开始的几十至一百 ns 内,二极管的正向导通电压有几十 V 之多。几十 V 的正向电压-换句话说也就是二极管没有导通。后来终于也有人开始正视这个问题了,比较近期的资料上已经清楚的标出了这个由于二极管正向导通延时而造成的尖峰。大多数的二极管制造商都不会在 datasheet 中给出这个“正向恢复时间”的参数。于是大家也一直觉得相对于反向的恢复时间,正向导通是相当快的,可以忽略不计。事实上,在某些快速开关的场合,这个参数还是要考虑

6、的。像 LINEAR 的这个 AN 中提到的:Diode Turn-On Time Induced Failures-an122f也不是所有的二极管规格书中都没有提到“正向恢复”这个参数,还是让我找到了一个-ON Semi 的:MUR260-D 在 MUR260 的规格书中给出的正向恢复时间是50ns。看来比 UF4007要快。这里并不想深入讨论“正向恢复”这个参数。由于这个参数会对 RCD 的线路多少有些影响,所以想比较一下不同开关速度的二极管的正向导通特性的差异。以下的例子中还是用“谈谈 RCD 的计算结果为何与实验参数出入很大”中的反激电源为例:上图中是用三种不同开关速度(反向恢复时间)

7、的二极管 UF4007、FR107和1N4007 来作比较。可以发现其正向恢复时间是差不多的。如果真的要仔细比较的话,那么 UF4007 好像要导通的稍微慢一点。上面各波形对应的 RCD 参数如下:那么如果电阻 Rsn=39K 和电容 Csn=10nF 不变,而只改变二极管呢?由上面的图中看出-钳位电压 Vsn 随着二极管的反向恢复时间的加长而显著下降。使用反向恢复时间长的二极管(其作用):1.可以使钳位电压 Vsn 降低。2.1N4007不但能降低 Vsn,还大大降低了初级漏感 Llk 与 MOS 管 Coss 谐振的幅度(有利于改善 EMI)。看一看实验中的这几种最常用的的二极管的反向恢复

8、时间:对于 UF4007 和 FR107,看了一些厂家的 datasheet,其反向恢复时间是完全一样的。然而,1N4007 就不同了。像 Good Ark 的 1N4007,反向恢复时间 Trr 只有 2us(还是比较快的),但通用半导体的1N4007有 30us 之多。还有的厂家没有注明反向恢复时间的,可能比30us 还要长。所以 PI 的资料中讲,不要用没有标明反向恢复时间的 1N4007。上面实验中用的1N4007,我手上没有规格书。无从知道反向恢复时间 Trr 是多少,只能自己测一下了。参考别人规格书中的 Test Setup,我用的数值和上图中的参数不是完全一样,但接近。由于开关的

9、原因,有些 noise。但不影响测量实际测得的反向恢复时间大概是2us,还不错。下面来看看反向恢复时间 Trr 为什么会对 RCD 的钳位电压有影响。图中蓝色线为二极管 UF4007(+)的电压波形,也就是 Vsn。黄色线为二极管(-),或者说是电容 Csn 上的电压。(示波器的地接 Vin)1.图中二极管正向导通后对电容 Csn 充电,至 A 点充电完成。之后二极管正极电压开始低于负极电压,二极管反向。2.由于 UF4007的反向恢复时间有 75ns,在这段时间内二极管可以看成一个动态变化的电阻(阻值由小变大)。图中的黄色线,实际上是电容 Csn 上的电压。可以看出在 A 点到 B 点的这段

10、时间,电容上的电压有明显的下降,也就是放电。3.这个放电的速度比通过电阻 Zsn 的正常放电速度要快很多。显然,是通过二极管放的电。上面的例子里用的是超快恢复的 UF4007,可以想见如果是慢些的 FR107,或者更慢的1N4007,那么放电是时间会更长、等效的动态电阻也越小。钳位电压 Vsn 自然要更低了。接下来分析一下第4帖中的使用三种开关速度不同的二极管的 RCD 钳位电路中,电阻 Rsn 上的能耗。参数分别如下:图一Vsn=212VD=UF4007;C=10N;R=39K;VCsn=119V图二Vsn=213VD=FR107;C=10N;R=120K;VCsn=139V图三Vsn=21

11、2VD=1N4007;C=10N;R=270K;VCsn=122V由上面的参数可以算出 RCD 钳位线路电阻上的功耗分别是 0.36W、0.16W 和 0.055W。三组线路得到的钳位电压 Vsn 大致一样。如果能量全部被 RCD 吸收的话,那么电阻 Zsn 上的功耗也应该基本一致。但是实际测量和计算出的结果不是这样的 原因很显然-电容 Csn 上的能量经二极管(反向)放掉了一部分。对于1N4007的电路来说,是放掉了很大的一部分。能量去了哪里呢?让我们先来看看“西安科技大学刘树林教授”的分析 (摘自:电源网技术文章分享RCD钳位电路)5)t4-t5阶段。t4时刻,二极管 D1已关断,但由于开

12、关管漏源寄生电容 Cds 的电压 UDS=Ui+UCPUi,将有一反向电压加在变压器原边两端,因此,Cds 与变压器原边励磁电感 Ls 及其漏感 Llk 开始谐振,其能量转移等效电路如图2(e)所示。谐振期间,开关管的漏源电压 UDS 逐渐下降,储存于 Cds 中的能量的一部份将转移到副边,另一部分能量返回输入电源,直到 t5时刻谐振结束时,漏源电压 UDS 稳定在 Ui+Uf。由于此阶段二极管 D1关断,钳位电容 C1通过电阻 R1放电,其电压 UC 将下降。结合图1和图2进行分析可知:如果反馈电压大于钳位电容电压,则在整个开关关断期间,回馈电压一直在向 RCD 钳位电路提供能量,而该能量最

13、终将被电阻 R1消耗,因而将产生巨大的损耗。先来把图重新画一下,看的舒服一些。上面刘教授的分析中,是假设二极管没有反向恢复时间的理想元件。而实际上反向后的二极管在一段时间内(Trr),等效成一个动态变化的电阻。见下图在电容 Coss 对初级漏感 Llk 放电的同时,Csn 也通过 Dsn 向漏感放电。于是原本只有 Coss 和 Llk 参与的谐振,在初始的阶段实际上 Csn 也参与了进来。同时也带来了 Csn 上部分能量。刘教授讲-“谐振期间,开关管的漏源电压 UDS 逐渐下降,储存于 Cds 中的能量的一部份将转移到副边,另一部分能量返回输入电源”。根据此说法,如果谐振的能量能够一部分转移到

14、次级,那么电源整体的效率是不是会提高呢?答案是肯定的 由实验的结果看出-钳位电压 Vsn 相同的情况下,使用反向恢复越慢的二极管,电源的效率就会越高。二极管上的功耗会相应地大一些,但温度并不是高很多。刘教授关于 Cds(Coss)能量的分析中“另一部分能量返回输入电源”的说法,我不大认同。如果撇开次级不看,初级部分就是一个漏感 Llk、电容 Coss 和输入电源的串联电路。对于 AC 来说,电源 Vin 相当于短路。谐振的能量是不能返回输入电源 Vin 的。用 Pspice 线路仿真验证一下。谐振的幅度没有减小,也就是说-能量没有转移输入电源。次级方面呢?反向恢复慢的二极管 1N4007 在

15、RCD 线路中应用,抑制了初级漏感上的能量引致的谐振(振铃现象)-1.有助于减小次级输出的电压波动。2.大大地减小 1MHz 十几 MHz 间的 EMI 噪声。Effects of Fast vs.Slow Diodes in Clamp Circuit A slow reverse recovery diode(1 us)reduces the feedback voltage ringing and improve output regulation.Using a fast diode(500 ns)increases the amplitude of ringing which can

16、 result in increased output ripple.In Figure 15 the(larger)ring amplitude when using a FR104 diode represents up to an 8%error in the sampled voltage over the time period 2.5 us to 3.1 us.下面摘自 ON Semi 的 AN8461There is a difference in ringing(and subsequently in radiated EMI)depending on usage of TVS clamp or the RCD clamp with the“slow”1N4007.Figures 7 and 8 show the difference in ringing voltages between the two implementations,under the same input voltage and load conditions.The ringing peak t

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1