ImageVerifierCode 换一换
格式:DOCX , 页数:29 ,大小:376.12KB ,
资源ID:26040959      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/26040959.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(几类典型的目镜系统设计.docx)为本站会员(b****9)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

几类典型的目镜系统设计.docx

1、几类典型的目镜系统设计中北大学课 程 设 计 说 明 书学生: 褚文博 学 号: 1105024219 学 院:信息与通信工程学院 专 业: 光信息科学与技术 题 目: 几类典型的目镜系统设计 指导教师: 友华 职称: 讲师 引言 目镜是目视光学系统的重要组成部分。被视察的物体通过望远镜和显微物镜成像在目镜的物方焦平面处,经目镜系统放大后将其成像在无穷远处,供人眼观察。从目镜的光学特性来讲,具有以下特点: (1)焦距短。一般目镜的焦距在15mm-30mm左右,和一般望远镜比起来,焦距短是它的一个特点。(2)相对孔径比较小。由于目镜的出射光束直接进入人眼的瞳孔,人眼瞳孔的直径一般在2mm-4mm

2、左右变化,因此大多数实验室仪器出瞳直径一般在2mm左右,目镜焦距常用的围为15mm-30mm,故目镜的相对孔径一般小于1/5.(3)视场角大。通常在左右,广角目镜的视场在左右。(4)入瞳和出瞳远离透镜组目镜设计原则:在设计目镜时,通常按反向光路计算像差,即假定物平面位于无限远,目镜对无限远目标成像,在目标的焦面上衡量系统的像差。至于目镜的光瞳位置,可以按两种方式给出。第一种方式是把实际系统的出瞳作为反向光路时目镜的入瞳,给出入瞳距离p,入瞳直径D等于系统要求的出瞳直径。在目镜像差校正的过程中,要求保证边缘视场的主光线通过正向光路时物镜的出瞳中心(即正向光路目镜的入瞳中心)。其他视场的主光线,由

3、于存在光阑球差并不通过同一点,这样计算出来的像差和实际成像光束的像差虽完全不同,但一般较小,可以忽略。第二种方式是如果像差计算程序能够在给出实际光阑后自动求出入瞳位置,并用调整主光线位置的方法,保证不同视场的主光线通过实际光阑的中心。这样可以把正向光路时物镜的出瞳作为实际光阑给出,计算出来的像差和实际成像光是的情况符合。本设计采用第一种方法。在望远镜和显微镜中,目前常用的目镜有惠更斯目镜、冉斯登目镜、凯尔纳目镜、对称式目镜。第一章 设计原理1.1 目镜设计结构与原理(1)惠更斯目镜结构与原理惠更斯(Huygoens)目镜是由两片未经过色差校正的凸透镜组成;靠近眼睛的一片称为目透镜,起放大作用;

4、另一片称为场透镜,它的作用使映像亮度均匀。在两块透镜之间的目透镜焦平面放一光栏,把显微刻度尺放在此光栏上,从目镜中观察到迭加在物象上的刻度。如下图1.1所示,这就是所谓的惠更斯目镜。 图1.1 惠更斯目镜结构(2)冉斯登目镜结构与原理冉斯登目镜,由两个焦距相等的平凸透镜组成,两个凸面相对,两者的间距d等于焦距的23。冉斯登目镜的球差、轴向色差和畸变等均小于惠更斯目镜,但垂轴色差较大。若用消色差胶合透镜代替接目镜(称为开尔纳目镜),则可校正垂轴色差。冉斯登目镜可当普通放大镜使用。如下图1.2所示,这就是所谓的冉斯登目镜。图1.2 冉斯登目镜(3)凯尔纳目镜结构与原理凯尔纳目镜,以字母K表示,是冉

5、斯登目镜的改进型,消除了冉斯登目镜的色差,这种目镜,视场大,常用在低倍率观测上,如彗星或大面积的天体。结构如图1.3所示:图1.3 凯尔纳目镜结构(4)对称式目镜结构与原理对称式目镜是一种中等视场的目镜,由两个相互对称的双胶合透镜构成,应用广泛,并且与其他目镜相比较,垂轴色差和轴向色差都能校正的较好,象散和慧差也可以校正得很好,场曲也比较小。是中等视场的目镜中像质较好的一种,出瞳距离也比较大,有利于缩小整个仪器的体积和重量,因此在一些中等倍率和出瞳距离要求较大的望远系统中使用的很多。如下图1.4所示,这就是所谓的对称式目镜图1.4 对称式目镜结构1.2缩放法缩放法步骤: 1.物镜选型 2.缩放

6、焦距 3.更换玻璃(1)保持色差不变更换玻璃 (2)更换玻璃校正色差 4.估算高级像差5.检查边界条件第二章 目镜设计2.1原始数据分析 本次课程在目镜设计过程中从一些专利文献和镜头手册中选出一些光学特性与所设计的目镜尽可能接近的资料作为初始结构。根据各种类型目镜基本光学特性之间的关系,确定所以选型是否合适,这关系到整个显微物镜设计的成败。 本次课设要求的参数为入瞳直径:4mm;半视场角25;畸变小于10%;本次课设所选定的初始结构及各参数查自光学设计手册2.2惠更斯目镜设计(1) 数据分析将数据输入ZEMAX,如图2.1.1所示:图2.1.1 惠更斯目镜初始结构参数点击工具栏中Lay图标,出

7、现优化前物镜系统平面剖面组,结构基本满足设计结构要求,没有出现设计结构的变形和不合理现象。如图2.1.2所示:图2.1.2 惠更斯目镜初始结构(2) 初始结构像质评价1) 点击工具栏中Ray图标,出现ray fan曲线图,如图2.1.3所示:图2.1.3 ray fan曲线ray fan表示是光学系统的综合误差。它的横坐标是光学系统的入瞳标量, 纵坐标则是针对主光线(发光点直穿光阑中心点的那条光线)在像面上的位置的相对数值。 2) 点击工具栏中fcd图标,出现轴外细光束像差曲线,如图2.1.4所示:图2.1.4 轴外细光束像差曲线左图为像散场曲曲线,右图为畸变曲线,纵坐标为视场,横坐标左图是

8、场曲,右图是畸变的百分比值。综合所示,初始数据所示的光学系统像质不够好,畸变比较大。 3) 光学传递函数(MTF)分析,单击工具栏中的Mtf图标,出现光学系统的调制传递函数图,如图2.1.5所示:图2.1.5 光学系统的调制传递函数 图像分析:所谓MTF是表示各种不同频率的正弦强度分布函数经光学系统成像后,其对比度(即振幅)的衰减程度。当某一频率的对比度下降为零时,说明该频率的光强分布已无亮度变化,既该频率被截止。这是利用光学传递函数来评价光学系统成像质量的主要方法。从理论上可以证明,像点的中心点亮度值等于MTF曲线所围成的面积,曲线所围成的面积越大,表明光学系统所传递的信息量越多,光学系统的

9、成像质量越好,图像越清晰。因此在光学系统的接收器截止频率围,利用MTF曲线所围成的面积的大小来评价光学系统的成像质量是非常有效的。4) 点击工具栏中Spt图标,出现spot diagram曲线图,如图2.1.6所示:图2.1.6 spot diagram曲线图图像分析:在几何光学的成像过程中,由一点发出的许多条光线经光学系统成像后,由于像差的存在,使其与像面不再集中于一点,而是形成一个分布在一定围的弥散图形,称之为点列图点列图下方给的数可以看出每个视场的RMS RADIUS(均方根半径值)、AIRY光斑半径、GEO RADIUS为几何半径(最大半径),值越小成像质量越好。根据分布图形的形状也可

10、了解系统的各种几何像差的影响,如是否有明显像散或彗差特征,几种色斑的分开程度如何等。对于点列图图像而言,点阵集中程度越高,弥散半径越小,成像质量也就越高。就初始数据点列图图像而言,点阵分散,成像质量不高。(3) 惠更斯目镜的结构优化一般来说,透镜组的全部结构参数数可以作为优化变参量与优化,首先, 通过优化曲率半径的途径来提高像质,对优化结果进行像质评价。 采用ZEMAX自动优化的方法:首先右击第3和第5个面的Radius和两透镜的距离,选中Variable,点击Opt按钮,选中其中的Automatic,观察优化结构,与初始数据像差分析图进行比较,如果,光学系统得到优化,则将该组曲率半径固定,如

11、果结果不尽如人意,则将保留原始数据。按照如此的思路,对本光学系统中出现的曲率半径依次进行优化,最终得到曲率半径优化完成的参数,并对图像进行分析。得到的光学系统分析图如下:图2.1.7 优化后的ray fan曲线图2.1.8 优化后的MTF图2.1.9 优化后的点列图经过对优化后图像的分析可知,光学系统的像差得到了一定的校正,优化后的结果明显优于优化前的结果。优化后的惠更斯目镜的参数如图2.1.10所示:图2.1.10 优化后的惠更斯目镜参数2.3 冉斯登目镜设计(1) 数据分析将数据输入ZEMAX,如图2.2.1所示:图2.2.1 冉斯登目镜初始结构参数点击工具栏中Lay图标,出现优化前物镜系

12、统平面剖面组,结构基本满足设计结构要求,没有出现设计结构的变形和不合理现象。如图2.2.2所示:图2.2.2 冉斯登目镜初始结构(2) 初始结构像质评价 1) 点击工具栏中Ray图标,出现ray fan曲线图,如图2.2.3所示:图2.2.3 ray fan曲线ray fan表示是光学系统的综合误差。它的横坐标是光学系统的入瞳标量, 纵坐标则是针对主光线(发光点直穿光阑中心点的那条光线)在像面上的位置的相对数值。 2) 点击工具栏中fcd图标,出现轴外细光束像差曲线,如图2.2.4所示:图2.2.4 轴外细光束像差曲线左图为像散场曲曲线,右图为畸变曲线,纵坐标为视场,横坐标左图是 场曲,右图是

13、畸变的百分比值。综合所示,初始数据所示的光学系统像质不够好,畸变比较大。 3) 光学传递函数(MTF)分析,单击工具栏中的Mtf图标,出现光学系统的调制传递函数图,如图2.2.5所示:图2.2.5 光学系统的调制传递函数 图像分析:所谓MTF是表示各种不同频率的正弦强度分布函数经光学系统成像后,其对比度(即振幅)的衰减程度。当某一频率的对比度下降为零时,说明该频率的光强分布已无亮度变化,既该频率被截止。这是利用光学传递函数来评价光学系统成像质量的主要方法。从理论上可以证明,像点的中心点亮度值等于MTF曲线所围成的面积,曲线所围成的面积越大,表明光学系统所传递的信息量越多,光学系统的成像质量越好

14、,图像越清晰。因此在光学系统的接收器截止频率围,利用MTF曲线所围成的面积的大小来评价光学系统的成像质量是非常有效的。 4)点击工具栏中Spt图标,出现spot diagram曲线图,如图2.2.6所示:图2.2.6 spot diagram曲线图图像分析:在几何光学的成像过程中,由一点发出的许多条光线经光学系统成像后,由于像差的存在,使其与像面不再集中于一点,而是形成一个分布在一定围的弥散图形,称之为点列图点列图下方给的数可以看出每个视场的RMS RADIUS(均方根半径值)、AIRY光斑半径、GEO RADIUS为几何半径(最大半径),值越小成像质量越好。根据分布图形的形状也可了解系统的各

15、种几何像差的影响,如是否有明显像散或彗差特征,几种色斑的分开程度如何等。对于点列图图像而言,点阵集中程度越高,弥散半径越小,成像质量也就越高。就初始数据点列图图像而言,点阵分散,成像质量不高。(3) 冉斯登目镜的结构优化同惠更斯目镜,得到的光学系统分析图如下:图2.2.7 优化后的ray fan曲线图2.2.8 优化后的MTF图2.2.9 优化后的点列图经过对优化后图像的分析可知,光学系统的像差得到了一定的校正,优化后的结果明显优于优化前的结果。优化后的惠更斯目镜的参数如图2.2.10所示:图2.2.10 优化后的惠更斯目镜参数2.4 凯尔纳目镜设计(1) 数据分析将数据输入ZEMAX,如图2

16、.3.1所示:图2.3.1 凯尔纳目镜初始结构参数 点击工具栏中Lay图标,出现优化前物镜系统平面剖面组,结构基本满足设计结构要求,没有出现设计结构的变形和不合理现象。如图2.3.2所示:图2.3.2 惠更斯目镜初始结构(2) 初始结构像质评价 1) 点击工具栏中Ray图标,出现ray fan曲线图,如图2.3.3所示:图2.3.3 ray fan曲线ray fan表示是光学系统的综合误差。它的横坐标是光学系统的入瞳标量, 纵坐标则是针对主光线(发光点直穿光阑中心点的那条光线)在像面上的位置的相对数值。 2) 点击工具栏中fcd图标,出现轴外细光束像差曲线,如图2.3.4所示:图2.3.4 轴

17、外细光束像差曲线左图为像散场曲曲线,右图为畸变曲线,纵坐标为视场,横坐标左图是 场曲,右图是畸变的百分比值。综合所示,初始数据所示的光学系统像质不够好,畸变比较大。 3) 光学传递函数(MTF)分析,单击工具栏中的Mtf图标,出现光学系统的调制传递函数图,如图2.3.5所示:图2.3.5 光学系统的调制传递函数 图像分析:所谓MTF是表示各种不同频率的正弦强度分布函数经光学系统成像后,其对比度(即振幅)的衰减程度。当某一频率的对比度下降为零时,说明该频率的光强分布已无亮度变化,既该频率被截止。这是利用光学传递函数来评价光学系统成像质量的主要方法。从理论上可以证明,像点的中心点亮度值等于MTF曲

18、线所围成的面积,曲线所围成的面积越大,表明光学系统所传递的信息量越多,光学系统的成像质量越好,图像越清晰。因此在光学系统的接收器截止频率围,利用MTF曲线所围成的面积的大小来评价光学系统的成像质量是非常有效的。 4)点击工具栏中Spt图标,出现spot diagram曲线图,如图2.3.6所示:图2.3.6 spot diagram曲线图图像分析:在几何光学的成像过程中,由一点发出的许多条光线经光学系统成像后,由于像差的存在,使其与像面不再集中于一点,而是形成一个分布在一定围的弥散图形,称之为点列图点列图下方给的数可以看出每个视场的RMS RADIUS(均方根半径值)、AIRY光斑半径、GEO

19、 RADIUS为几何半径(最大半径),值越小成像质量越好。根据分布图形的形状也可了解系统的各种几何像差的影响,如是否有明显像散或彗差特征,几种色斑的分开程度如何等。对于点列图图像而言,点阵集中程度越高,弥散半径越小,成像质量也就越高。就初始数据点列图图像而言,点阵分散,成像质量不高。 (3) 凯尔纳目镜的结构优化采用ZEMAX自动优化的方法:首先右击第二个面的Radius,选中Variable, 点击Opt按钮,选中其中的Automatic,对第一组曲率半径进行自动优化,观察优化结构,与初始数据像差分析图进行比较,如果,光学系统得到优化,则将该组曲率半径固定,如果结果不尽如人意,则将保留原始数

20、据。按照如此的思路,对本光学系统中出现的曲率半径依次进行优化,最终得到曲率半径优化完成的参数,并对图像进行分析。对光学系统进行Thickness优化同理。经分析,光学系统得到一部分完善,但是还有不足,对光学系统进行人工优化,改变光焦距和厚度中的单一变量(同时要以对称式目镜的对称性为前提),观察改变某一变量时各像差分析图的变化趋势,如果变化趋势为光学系统趋于完善,那么保留此组数据的改变,如果结果表现出像差更明显的情况,则保留原数据。按照此过程,对光学系统进行再一次优化。得到最终光学系统分析图如下:图2.3.7 优化后的Ray fan曲线图2.3.8 优化后的MTF图2.3.9 优化后的点列图经过

21、对优化后图像的分析可知,光学系统的像差得到了一定的校正,优化后的结果明显优于优化前的结果。优化后的惠更斯目镜的参数如图2.3.10所示:图2.3.10 优化后的惠更斯目镜参数2.5 对称式目镜设计(1) 数据分析将数据输入ZEMAX,如图2.4.1所示:图2.4.1 对称式目镜初始结构参数点击工具栏中Lay图标,出现优化前物镜系统平面剖面组,结构基本满足设计结构要求,没有出现设计结构的变形和不合理现象。如图2.4.2所示:图2.4.2 对称式目镜初始结构(2) 初始结构像质评价1) 点击工具栏中Ray图标,出现ray fan曲线图,如图2.4.3所示:图2.4.3 ray fan曲线图像分析:

22、在ZEMAX中有一个重要的分析手段,就是显示ray fan图。ray fan表示是光学系统的综合误差。它的横坐标是光学系统的入瞳标量, 纵坐标则是针对主光线(发光点直穿光阑中心点的那条光线)在像面上的位置的相对数值。2) 点击工具栏中fcd图标,出现轴外细光束像差曲线,如图2.4.4所示:图2.4.4 轴外细光束像差曲线左图为像散场曲曲线,右图为畸变曲线,纵坐标为视场,横坐标左图是 场曲,右图是畸变的百分比值。综合所示,初始数据所示的光学系统像质不够好,畸变比较大。3) 光学传递函数(MTF)分析,单击工具栏中的Mtf图标,出现光学系统的调制传递函数图,如图2.4.5所示:图2.4.5 光学系

23、统的调制传递函数图像分析:所谓MTF是表示各种不同频率的正弦强度分布函数经光学系统成像后,其对比度(即振幅)的衰减程度。当某一频率的对比度下降为零时,说明该频率的光强分布已无亮度变化,既该频率被截止。这是利用光学传递函数来评价光学系统成像质量的主要方法。从理论上可以证明,像点的中心点亮度值等于MTF曲线所围成的面积,曲线所围成的面积越大,表明光学系统所传递的信息量越多,光学系统的成像质量越好,图像越清晰。因此在光学系统的接收器截止频率围,利用MTF曲线所围成的面积的大小来评价光学系统的成像质量是非常有效的。如图所示明显可知,MTF曲线所围成的面积过小,光学系统的成像质量不高,所以需要对其进行优

24、化。 4) 点击工具栏中Spt图标,出现spot diagram曲线图,如图2.4.6所示:图2.4.6 spot diagram曲线图图像分析:在几何光学的成像过程中,由一点发出的许多条光线经光学系统成像后,由于像差的存在,使其与像面不再集中于一点,而是形成一个分布在一定围的弥散图形,称之为点列图点列图下方给的数可以看出每个视场的RMS RADIUS(均方根半径值)、AIRY光斑半径、GEO RADIUS为几何半径(最大半径),值越小成像质量越好。根据分布图形的形状也可了解系统的各种几何像差的影响,如是否有明显像散或彗差特征,几种色斑的分开程度如何等。对于点列图图像而言,点阵集中程度越高,弥

25、散半径越小,成像质量也就越高。就初始数据点列图图像而言,点阵分散,成像质量不高。(3) 对称式目镜的结构优化同凯尔纳目镜,得到的光学系统分析图如下:图2.4.7 优化后的Ray fan曲线图2.4.8 优化后的MTF图2.4.9 优化后的点列图经过对优化后图像的分析可知,光学系统的像差得到了一定的校正,优化后的结果明显优于优化前的结果。优化后的惠更斯目镜的参数如图2.4.10所示:图2.4.10 优化后的惠更斯目镜参数第三章 学习心得体会通过本次光学设计课程设计,我不仅更加深刻的学习了光学设计的相关知识,而且学会使用了ZEMAX 常用的光学设计软件,同时,也锻炼了我们在学习新软件的能力,这是对

26、新知识的学习,是对新事物学习和接受能力的锻炼。最初,我们对设计的总体思路都没有一个大概的印象,最后通过到图书馆和上网查阅资料,并且看了以前上试验课时的PPT和一些资料,才对要使用的软件有大致的了解,安装ZEMAX后,慢慢的探索和练习。之后再是对我们课题进行慢慢的细细研究,有了点思路后,即先分析设计的要求,按给定的参数设定物方孔径,视场和波长等参数。然后按步骤即可进行设计,就可得到ray、fcd、spt、mtf等输出波形。但由于人为设计的可能不是最佳的,ZEMAX系统软件提供了一个自动优化功能,我们可在人为设计完成后进行自动优化,在把优化后的和未优化之前的进行比较,我们可以看到,经过优化后的图像

27、更加优美和科学性。 因此,在本次设计中,我们学到的不只是光学上的一些知识,还学会了一种设计思路和接受新事物的能力的锻炼。通过这次课程设计,使我更充分认识了团队合作的重要性。由于这次课设是以小组为单位对机构不同的运动位置进行运动分析和受力分析,还要查找资料,每个人都有分工。所以在进行分析的过程中每个成员都要保证自己计算数据的准确,查找资料时都要有耐心,这样才能确保小组顺利完成任务。在这次课设过程中,我们小组成员之间都互帮互助、共同思考,相互查漏补缺,互相给予信心,这样得以保证高速、高效率的完成任务,充分体现了团队精神。总之,这次课程设计使我收获很多、学会很多、比以往更有耐心很多。感学校及老师给我们这次课程设计的机会,最真挚的感我们的辅导老师友华老师 ,在设计过程中,老师精心的辅导和不厌其烦地的态度才使得我们以顺利的完成这次设计,他那无私的奉献的精神照耀着我们对学习的热爱,同时也增加我们对知识的追求和欲望度。参考文献1光学仪器设计手册.:国防科技,19712以谟,应用光学.:机械工业,19823钧,高明.光学设计.:电子科技大学,20064林友苞.光学设计导论.:国防工业,19605石顺祥,王学恩,马琳.物理光学与应用光学.:电子科技大学,2014

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1