1、管路流体阻力的测定实验二 管路流体阻力的测定一、实验目的 研究管路系统中的流体流动和输送,其中重要的问题之一,是确定流体在流动过程中的能量损耗。 流体流动时的能量损耗(压头损失),主要由于管路系统中存在着各种阻力。管路中的各种阻力可分为沿程阻力(直管阻力)和局部阻力两大类。 本实验的目的,是以实验方法直接测定摩擦系数和局部阻力系数。二、实验原理 当不可压缩流体在圆形导管中流动时,在管路系统内任意二个截面之间列出机械能衡算方程为或 式中;Z一流体的位压头,m液柱; P流体的压强,Pa; U一流体的平均流速,ms-1 h;一单位质量流体因流体阻力所造成的能量损失,Jkg-1 Hf一单位重量流体因流
2、体阻力所造成的能量损失,即所谓压头损失,m 液柱;符号下标1和2分别表示上游和下游截面上的数值。 假若:(1)水作为试验物系,则水可视为不可压缩流体; (2)试验导管是按水平装置的,则Z1=Z2; (3)试验导管的上下游截面上的横截面积相同,则u1=u2.因此(1)和(2)两式分别可简化为 由此可见,因阻力造成的能量损失(压头损失),可由管路系统的两截面之间的压力差(压头差)来测定。 当流体在圆形直管内流动时,流体因摩擦阻力所造成的能量损失(压头损失),有如下一般关系式: 或 式中;d一圆形直管的管径,m; l一圆形直管的长度,m; 一摩擦系数,【无因次】。 大量实验研究表明:摩擦系数又与流体
3、的密度和粘度,管径d、流速u和管壁粗糙度有关。应用因次分析的方法,可以得出摩擦系数与雷诺数和管壁相对粗糙度d存在函数关系,即 通过实验测得和Re数据,可以在双对数坐标上标绘出实验曲线。当Re2000时,摩擦系数与管壁粗糙度无关。当流体在直管中呈湍流时,不仅与雷诺数有关,而且与管壁相对粗糙度有关。 当流体流过管路系统时,因遇各种管件、阀门和测量仪表等而产生局部阻力,所造成的能量损失(压头损失),有如下一般关系式: 或 式中:u一连接管件等的直管中流体的平均流速,m s-1; 一局部阻力系数【无因次】。 由于造成局部阻力的原因和条件极为复杂,各种局部阻力系数的具体数值,都需要通过实验直接测定。三、
4、实验装置 本实验装置主要是由循环水系统(或高位稳压水槽)、试验管路系统和高位排气水槽串联组合而成,每条测试管的测压口通过转换阀组与压差计连通。 压差由一倒置U形水柱压差计显示。孔板流量计的读数申另一倒置U形水柱压差计显示。该装置的流程如图2-1所示。 图2-1 管路流体阻力实验装置流程1 循环水泵;2光滑试验管3粗糙试验管4扩大与缩小试验管;5孔板流量计;6阀门;7.转换阀组;8.高位排气水槽 试验管路系统是由五条玻璃直管平行排列,经U形弯管串联连接而成。每条直管上分别配置光滑管、粗糙管、骤然扩大与缩小管、阀门和孔板流量计。每根试验管测试段长度月两测压口距离均为 0.6m。流程图中标出符号 G
5、和 D分别表示上游测压口(高压侧)和下游测压口 低压侧)。测压口位置的配置,以保证上游测压口距U形弯管接口的距离,以及下游测压口距造成局部阻力处的距离,均大于50倍管径。 作为试验用水,用循环水泵或直接用自来水由循环水槽送入试验管路系统,由下而上依次流经各种流体阻力试验管,最后流人高位排气水槽。由高位排气水槽溢流出来的水,返回循环水槽。 水在试验管路中的流速,通过调节阀加以调节。流量由试验管路中的孔板流量计测量,并由压差计显示该数。 四、实验方法 实验前准备工作须按如下步骤顺序进行操作: (1)先将水灌满循环水槽,然后关闭试验导管入口的调节阀,再启动循环水泵。待泵运转正常后,先将试验导管中的旋
6、塞阀全部打开,并关闭转换阀组中的全部旋塞,然后缓慢 开启试验导管的入口调节阀。当水流满整个试验导管,并在高位排气水槽中有溢流水排出 时,关闭调节阀,停泵。 (2)检查循环水槽中的水位,一般需要再补充些水,防止水面低于泵吸入口。 (3)逐一检查并排除试验导管和联接管线中可能存在的空气泡。排除空气泡的方法是,先将转换阀组中被检一组测压口旋塞打开,然后打开倒置U形水柱压差计顶部的放空阀,直至排尽空气泡再关闭放空阀。必要时可在流体流动状态下,按上述方法排除空气泡。 (4)调节倒置U形压差计的水柱高度。先将转换阀组上的旋塞全部关闭,然后打开压差计顶部放空阀,再缓慢开启转换阀组中的放空阀,这时压差计中液面
7、徐徐下降。当压差计中的水柱高度居于标尺中间部位时,关闭转换阀组中的放空阀。为了便于观察,在临实验前,可由压差计项部的放空处,滴入几滴红墨水,将压差计水柱染红。 (5)在高位排气水槽中悬挂一支温度计,用以测量水的温度。 (6)实验前需对孔板流量计进行标定,作出流量标定曲线。 实验测定时,按如下步骤进行操作: (1)先检查试验导管中旋塞是否置于全开位置,其余测压旋塞和试验系统入口调节阀是否全部关闭。检查毕启动循环水泵。(2)待泵运转正常后,根据需要缓慢开启调节阀调节流量,流量大小由孔板流量计的压差计显示。(3)待流量稳定后,将转换阀组中,与需要测定管路相连的一组旋塞置于全开位置,这时测压口与倒置U
8、形水柱压差计接通,即可记录由压差计显示出压强降。 (4)当需改换测试部位时,只需将转换阀组由一组旋塞切换为另一组旋塞。例如,将G1和D1一组旋塞关闭,打开另一组G2和D2 旋塞。这时,压差计与G1和D1测压口断开,而与G2和D2测压口接通,压差计显示读数即为第二支测试管的压强降。以此类推。 (5)改变流量,重复上述操作,测得各试验导管中不同流速下的压强降。 (6)当测定旋塞在同一流量不同开度的流体阻力时,由于旋塞开度变小,流量必然会随之下降,为了保持流量不变,需将入口调节阀作相应调节。 (7)每测定一组流量与压强降数据,同时记录水的温度。实验注意事项: (1)实验前务必将系统内存留的气泡排除干
9、净,否则实验不能达到预期效果。(2)若实验装置放置不用时,尤其是冬季,应将管路系统和水槽内水排放干净。五、实验数据记录及整理 (1)实验基本参数 试验导管的内径 d mm 试验导管的测试段长度l mm 粗糙管的粗糙度= mm 粗糙管的相对粗糙度/d= 孔板流量计的孔径d0= mm旋塞的孔径dv= mm (2)流量标定曲线 (3)实验数据实验序号1234567孔板流量计的压差计读数,R/mmHg658553497427354277198水流量的计算 (以序号1为例)实验序号1234567孔板流量计的压差计读数,R/mmH2O658553497427354277198水的流量,Vs/m3s-12.
10、2582.071.9621.8191.6561.4651.239水的流速,u/ms-10.9950.9120.8650.8010.730.6450.546水的温度,T/24.624.524.324.92423.723.6水的密度,/kgm-3997.2997.2997.3997.1997.3997.4997.4水的粘度,104/Pas9.029.049.088.969.149.219.23光滑管压头损失,Hf1/mmH2O64615243383125粗糙管压头损失, Hf2/mmH2O2001741561341159062孔板流量计压头损失,(全开)Hf1/mmH2O5064213773382
11、71212153旋塞压头损失, Hf2/mmH2O2051791611301159264计算和(以序号1为例)(1)光滑管(2)粗糙管(3)孔板流量计(4)旋塞(4)数据整理实验序号1234567水的流速,u/ms-10.9950.9120.8650.8010.730.6450.546雷诺准数,Re/1.871.711.611.521.351.191光滑管摩擦系数,1/-0.0360.0410.0390.0370.040.0410.047粗糙管摩擦系数,2/-0.1120.1160.1160.1160.120.120.116孔板流量计局部阻力系数,1/-10.039.939.8910.339.
12、999.9810.08旋塞的局部阻力系数(全开),1/-4.064.224.233.974.244.334.22(5)标绘Re实验曲线Re187000.036171000.041161000.039152000.037135000.04119000.041100000.047在Excel 处理作图:1、 打开图表向导: 把上面数据复制到Excel中并选中,点击工具栏上的“图表向导”2、 点击下一步,系列应在“列”3、 点击下一步,在数值x值下输入Re,在数值y值下输入4、 点击下一步, 点出“完成”修饰Re图1、 选定“数值y轴主要网格线”,点击“Del”键,选定绘图区,点击“Del”键,得结果图。2、 将X、Y轴的刻度由直角坐标改为对数坐标:选定X轴,点右键,选择坐标轴格式得到“坐标轴格式“对话框,根据Re的数值范围改变”最小值”、“最大值”,并将“主要刻度”改为“10”,从而将X轴的刻度由直角坐标改为对数坐标。同理将Y轴的刻度由直角坐标改为对数坐标。3、 用绘图工具绘制曲线: 打开“绘图工具栏”(方法:点击菜单上的“视图”选择“工具栏”选择“绘图”命令),单击“自选图形”指向“线条”再单击“曲线”命令,绘制曲线(方法:单击要开始绘制曲线的位置,再继续移动鼠标,然后单击要添加曲线的任意位置。若要结束绘制曲线,请随时双击鼠标),得最终结果。
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1