1、人教版六年级上册数学知识点整理改第一单元 分数乘法一、分数乘法(一)分数乘法的意义:1.分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。例如: 5表示求5个的和是多少?2.分数乘分数是求一个数的几分之几是多少。 例如: 表示求的是多少?(二)分数乘法的计算法则:1.分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)2.分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。3.为了计算简便,能约分的要先约分,再计算。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。(三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
2、一个数(0除外)乘小于1的数(0除外),积小于这个数。一个数(0除外)乘1,积等于这个数。(四)分数混合运算的运算顺序和整数的运算顺序相同。(五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。乘法交换律: a b = b a 乘法结合律: ( a b )c = a ( b c )乘法分配律: ( a + b )c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1.画线段图:(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。2.找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面3
3、.求一个数的几倍: 一个数几倍; 求一个数的几分之几是多少: 一个数。4.写数量关系式技巧: (1)“的” 相当于 “” “占”、“是”、“比”相当于“ ”(2)分率前是“的”: 单位“1”的量分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量(1分率)=分率对应量第二单元 位置和方向1、 用数对确定点的位置,如(3,5)表示:(第三列,第五行)几 列 几 行 竖排叫列 横排叫行 (从左往右看) (从前往后看)2、 平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。3、 图形左、右平移: 行不变 图形上、下平移: 列不变第三单元 分数除法一、倒数1、倒数的意义: 乘积是
4、1的两个数互为倒数。强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。(4)、求小数的倒数: 把小数化为分数,再求倒数。3、1的倒数是1; 0没有倒数。 因为11=1;0乘任何数都得0,(分母不能为0)4、 对于任意数,它的倒数为;非零整数的倒数为;分数的倒数是; 5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。二、分数除法1、分数除法的意义:乘法
5、: 因数 因数 = 积 除法: 积 一个因数 = 另一个因数 分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数。3、 规律(分数除法比较大小时): (1)、当除数大于1,商小于被除数; (2)、当除数小于1(不等于0),商大于被除数; (3)、当除数等于1,商等于被除数。4、 “”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。三、分数除法解决问题(未知单位“1”的量(用除法): 已知单位“1”的几分之几是多少,求单位“1”。 )1、数量关系式和分数
6、乘法解决问题中的关系式相同:(1)分率前是“的”: 单位“1”的量分率=分率对应量(2)分率前是“多或少”的意思: 单位“1”的量(1分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程: 根据数量关系式设未知量为X,用方程解答。(2)算术(用除法): 分率对应量对应分率 = 单位“1”的量 3、求一个数是另一个数的几分之几:就 一个数另一个数4、求一个数比另一个数多(少)几分之几: 两个数的相差量单位“1”的量 或: 求多几分之几:大数小数 1 求少几分之几: 1 - 小数大数5、工程问题:工作量=工作效率工作时间 工作量=工作效率和工作时间工作效率=工作量工作时间 工作效率一 =
7、 工作效率和-工作效率二工作时间=工作量工作效率工作量一般用单位“1”表示;工作效率等于工时分之一。第四单元 比(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如 15 :10 = 1510=(比值通常用分数表示,也可以用小数或整数表示) 前项 比号 后项 比值3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例: 路程速度=时间。4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。比值:相当于商,是一个数,可以是整数,
8、分数,也可以是小数。5、根据分数与除法的关系,两个数的比也可以写成分数形式。6、比和除法、分数的联系: 比前 项比号“:”后 项比值除 法被除数除号“”除 数商分 数分 子分数线“”分 母分数值7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。8、根据比与除法、分数的关系,可以理解比的后项不能为0。 体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变
9、。比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。3、根据比的基本性质,可以把比化成最简单的整数比。4.化简比: 用比的前项和后项同时除以它们的最大公因数。(1) 两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。两个小数的比:向右移动小数点的位置,先化成整数比再化简。(2)用求比值的方法。注意: 最后结果要写成比的形式。如: 1510 = 1510 = = 325按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。如: 已知两个量之比为,则设这两
10、个量分别为。6、 路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4) 工作总量一定,工作效率和工作时间成反比。(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)第五单元 圆一、 认识圆1、圆的定义:圆是由曲线围成的一种平面图形。2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。 一般用字母O表示。它到圆上任意一点的距离都相等3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。5
11、、圆心确定圆的位置,半径确定圆的大小。6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。7在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。用字母表示为:d2r或r 8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线叫做对称轴。9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。10、只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。只有2条对称轴的图形是: 长方形只有3条对称轴的图形是: 等边三角形只有4条对称轴的图形是: 正方形;有无数条对称轴的图形是
12、: 圆、圆环。二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。发现一般规律,就是圆周长与它直径的比值是一个固定数()。3圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。用字母(pai) 表示。(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。圆周率是一个无限不循环小数。在计算时,一般取 3.14。(2)、在判断时,圆周长与它直径的比值是倍,而不是3.14倍。(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。4、圆的周长公式: C
13、= d d = C 或C=2 r r = C 25、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。6、区分周长的一半和半圆的周长:(1) 周长的一半:等于圆的周长2 计算方法:2 r 2 即 r (2)半圆的周长:等于圆的周长的一半加直径。 计算方法:r2r 即 5.14 r三、圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积。 用字母S表示。2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。3、圆面积公式的推导:(1)、用逐渐逼近的转化思想: 体现化圆为方,化曲为直;化新为旧,化未知为已知,化
14、复杂为简单,化抽象为具体。(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。(3)、拼出的图形与圆的周长和半径的关系。圆的半径 = 长方形的宽 圆的周长的一半 = 长方形的长 因为: 长方形面积 = 长 宽所以: 圆的面积 = 圆周长的一半 圆的半径 S圆 = r r圆的面积公式: S圆 = r2 r2 = S 4、环形的面积: 一个环形,外圆的半径是R,内圆的半径是r。(Rr环的宽度)S环 = R 或环形的面积公式: S环 = (R)。5、扇形的面积计算公式: S扇 = r2(n表示扇形圆心角的度数)6、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而
15、面积扩大或缩小的倍数是这倍数的平方倍。 例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。7、两个圆: 半径比 = 直径比 = 周长比;而面积比等于这比的平方。 例如:两个圆的半径比是23,那么这两个圆的直径比和周长比都是23,而面积比是498、任意一个正方形与它内切圆的面积之比都是一个固定值,即:49、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。10、常用各值结果: = 3.142 = 6.28 3 = 9.42 5 = 15.7 6 = 18.84 7 = 21.98 9
16、= 28.2610 = 31.4 16 = 50.24 36 = 113.0464 = 200.9696 = 301.444 = 12.56 8 = 25.12 25 = 78.511、常用平方数结果= 121 = 144 = 169 = 196 = 225 = 256 = 289 = 324 = 361第六单元 百分数(一)一、百分数的意义和写法1、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。2、 千分数:表示一个数是另一个数的千分之几。3、 百分数和分数的主要联系与区别:(1) 联系:都可以表示两个量的倍比关系。(2) 区别:、意义不同:百
17、分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。4、百分数的写法:通常不写成分数形式,而在原来分子后面加上“”来表示。二、百分数和分数、小数的互化(一)百分数与小数的互化:1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。2. 百分数化成小数:把小数点向左移动两位,同时去掉百分号。 (二)百分数的和分数的互化1、百分数化成分数:先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。2
18、、分数化成百分数: 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。(三)常见的分数与小数、百分数之间的互化= 0.5 = 50% = 0.2 = 20% = 0.625 = 62.5% = 0.25 = 25% = 0.4 = 40% = 0.125 = 12.5% = 0.75 = 75% = 0.6 = 60% = 1.375 = 37.5% = 0.0625 = 6.25% = 0.8 = 80% = 0.875 = 87.5% = 0.04 = 4 = 0.08 = 8 = 0.12 =
19、 12 = 0.16 = 16 三、用百分数解决问题(一)一般应用题1、常见的百分率的计算方法:合格率 = 发芽率 = 出勤率 = 达标率 = 成活率 = 出粉率 = 一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。(一般出粉率在70、80%,出油率在30、40%。)2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题:数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”: 单位“1”的量分率=分率对应量(2)分率前是“多或少”的意思: 单位“1”的量(1分率)=分率对应量3、未知单位“
20、1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。 解法:(建议:最好用方程解答)(1)方程: 根据数量关系式设未知量为X,用方程解答。(2)算术(用除法): 分率对应量对应分率 = 单位“1”的量 4、求一个数比另一个数多(少)百分之几的问题:两个数的相差量单位“1”的量 100% 或:1 求多百分之几:(大数小数 1) 100% 求少百分之几:( 1 - 小数大数) 100% (二)、折扣1、折扣:商品按原定价格的百分之几出售,叫做折扣。通称“打折”。几折就表示十分之几,也就是百分之几十。例如八折= = 80,六折五=0.65=652、一成是十分之一,也就是10%。三成五就
21、是十分之三点五,也就是35%(三)、纳税1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。2、纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。3、应纳税额:缴纳的税款叫做应纳税额。4、税率:应纳税额与各种收入的比率叫做税率。5、应纳税额的计算方法:应纳税额 = 总收入 税率(四)利息1、存款分为活期、整存整取和零存整取等方法。2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。3、本金:存入银行的钱叫做本金
22、。 4、利息:取款时银行多支付的钱叫做利息。5、利率:利息与本金的比值叫做利率。6、利息的计算公式:利息本金利率时间7、注意:如要上利息税(国债和教育储藏的利息不纳税),则:税后利息=利息-利息的应纳税额=利息-利息利息税率=利息(1-利息税率)第七单元 扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。也就是各部分数量占总数的百分比(因此也叫百分比图)。二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)第七单元 数学广角一、“鸡兔同笼”问题的特点:题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。二、“鸡兔同笼”问题的解题方法1、猜测法 2、假设法(1) 假如都是兔(2) 假如都是鸡(3) 古人“抬脚法”: 3、列方程法
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1