1、二次函数综合应用专题归纳训练一二次函数综合应用专题归纳训练一一、相似三角形的存在性问题1.在平面直角坐标系中,一个二次函数的图像经过A(1,0)B(3,0)两点.(1)写出这个二次函数图像的对称轴;(2)设这个二次函数图像的顶点为D,与 轴交与点C,它的对称轴与 轴交与点E,连接AC、DE和DB.当AOC与DEB相似时,求这个二次函数的表达式.二、等腰三角形的存在性问题2.如图,直线交轴于A点,交轴于B点,过A、B两点的抛物线交轴于另一点C(3,0). 求抛物线的解析式 在抛物线的对称轴上是否存在点Q,使ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.3.已知抛物线y
2、ax2bxc经过A(1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴(1)求抛物线的函数关系式;(2)设点P是直线L上的一个动点,当PAC的周长最小时,求点P的坐标;(3)在直线L上是否存在点M,使MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由 3、平行四边形的存在性问题4.(2014年山东泰安)二次函数y=ax2+bx+c的图象经过点(1,4),且与直线y=x+1相交于A、B两点(如图),A点在y轴上,过点B作BCx轴,垂足为点C(3,0)(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NPx轴,垂足为点P
3、,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标分析:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式;(2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N的坐标,利用x表示出MN的长,利用二次函数的性质求解;(3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标解:(1)由题设可知A(0,1),B(3,),根据题意得:,解得:,则二次函数的解析式是:y=x+1;(2)设N(x,x2x+1),则M、P点的坐标分别是
4、(x,x+1),(x,0)MN=PNPM=x2x+1(x+1)=x2x=(x+)2+,则当x=时,MN的最大值为;(3)连接MN、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,由于BCMN,即MN=BC,且BC=MC,即x2x=,且(x+1)2+(x+3)2=,解得:x=1,故当N(1,4)时,MN和NC互相垂直平分4、5.线段差的最值问题6.二次函数综合应用专题归纳训练二五、面积问题7.如图是二次函数的图象,其顶点坐标为M(1,-4).(1)求出图象与轴的交点A,B的坐标; (2)设直线AM与y轴交于点C,求BCM的面积.(3)在图中的抛物线上是否还存在点P,使得SPMB=SBCM,
5、如果不存在,说明理由;如存在,请直接写出P点的个数. C8.(2014重庆)如图,抛物线y=x22x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQAB交抛物线于点Q,过点Q作QNx轴于点N若点P在点Q左边,当矩形PQMN的周长最大时,求AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方)若FG=2DQ,求点F的坐标9
6、.(2013重庆)如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MNy轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,ABN的面积为S2,且S1=6S2,求点P的坐标六、二次函数与圆的结合10.如图,在平面直角坐标系中,坐标原点为O,A点坐标为(4,0),B点坐标为(1,0),以AB的中点P为圆心,AB为直径作P的正半轴交于点C(1)求经过A、B、C三点的抛物线所对应的函数解析式;(2)设M为(1)中抛物线的顶点,求直线MC对应的函数解析式;(3)试说明直线MC与P的位置关系,并证明你的结论11.将AOB置于平面直角坐标系中,点O为坐标原点,点A为(3,0),ABO60.(1)若AOB的外接圆与y轴交于点D,求D点坐标;(2)若点C为(1,0),试猜想直线DC与AOB的外接圆的位置关系,并说明理由;(3)二次函数的图象经过点O和A且顶点在圆上,求此函数的解析式 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1