ImageVerifierCode 换一换
格式:PPT , 页数:33 ,大小:413.50KB ,
资源ID:2585049      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/2585049.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(试验优化设计-数学建模非线性规划9-1_精品文档.ppt)为本站会员(b****2)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

试验优化设计-数学建模非线性规划9-1_精品文档.ppt

1、数学建模数学建模非线性规划非线性规划 1*非线性规划的基本解法非线性规划的基本解法非线性规划的基本概念非线性规划的基本概念非线性规划非线性规划2 定义定义 如果目标函数或约束条件中至少有一个是非线性函数时的最优化问题就叫做非线性规划问题非线性规划问题非现性规划的基本概念非现性规划的基本概念 一般形式一般形式:(1)其中 ,是定义在 En 上的实值函数,简记:其它情况其它情况:求目标函数的最大值或约束条件为小于等于零的情况,都可通过取其相反数化为上述一般形式3非线性规划的基本解法非线性规划的基本解法SUTM外点法外点法SUTM内点法(障碍罚函数法)内点法(障碍罚函数法)1、罚函数法、罚函数法2、

2、近似规划法近似规划法4 罚函数法罚函数法 罚函数法罚函数法基本思想是通过构造罚函数把约束问题转化为一系列无约束最优化问题,进而用无约束最优化方法去求解这类方法称为序列无约束最小化方法序列无约束最小化方法简称为SUMTSUMT法法 其一为SUMTSUMT外点法外点法,其二为SUMTSUMT内点法内点法5 其中T(X,M)称为罚函数罚函数,M称为罚因子罚因子,带M的项称为罚项罚项,这里的罚函数只对不满足约束条件的点实行惩罚:当 时,满足各 ,故罚项=0,不受惩罚当 时,必有 的约束条件,故罚项0,要受惩罚SUTMSUTM外点法外点法6 罚函数法的缺点缺点是:每个近似最优解Xk往往不是容许解,而只能

3、近似满足约束,在实际问题中这种结果可能不能使用;在解一系列无约束问题中,计算量太大,特别是随着Mk的增大,可能导致错误1、任意给定初始点X0,取M11,给定允许误差 ,令k=1;2、求无约束极值问题 的最优解,设为Xk=X(Mk),即 ;3、若存在 ,使 ,则取MkM()令k=k+1返回(2),否则,停止迭代得最优解 .计算时也可将收敛性判别准则 改为 .SUTMSUTM外点法外点法(罚函数法)的迭代步骤迭代步骤7SUTMSUTM内点法(内点法(障碍函数法)8 内点法的迭代步骤内点法的迭代步骤9 近似规划法的基本思想近似规划法的基本思想:将问题(3)中的目标函数 和约束条件 近似为线性函数,并

4、对变量的取值范围加以限制,从而得到一个近似线性规划问题,再用单纯形法求解之,把其符合原始条件的最优解作为(3)的解的近似近似规划法近似规划法每得到一个近似解后,都从这点出发,重复以上步骤 这样,通过求解一系列线性规划问题,产生一个由线性规划最优解组成的序列,经验表明,这样的序列往往收敛于非线性规划问题的解。10 近似规划法的算法步骤如下算法步骤如下1112用MATLAB软件求解,其输入格式输入格式如下:1.x=quadprog(H,C,A,b);2.x=quadprog(H,C,A,b,Aeq,beq);3.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB);4.x=qua

5、dprog(H,C,A,b,Aeq,beq,VLB,VUB,X0);5.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB,X0,options);6.x,fval=quaprog(.);7.x,fval,exitflag=quaprog(.);8.x,fval,exitflag,output=quaprog(.);1、二次规划、二次规划13例例1 1 min f(x1,x2)=-2x1-6x2+x12-2x1x2+2x22 s.t.x1+x22 -x1+2x22 x10,x20 MATLAB(youh1)1、写成标准形式写成标准形式:2、输入命令输入命令:H=1-1;-1

6、2;c=-2;-6;A=1 1;-1 2;b=2;2;Aeq=;beq=;VLB=0;0;VUB=;x,z=quadprog(H,c,A,b,Aeq,beq,VLB,VUB)3、运算结果运算结果为:x=0.6667 1.3333 z=-8.2222s.t.14 1.首先建立M文件fun.m,定义目标函数F(X):function f=fun(X);f=F(X);2、一般非线性规划、一般非线性规划 其中X为n维变元向量,G(X)与Ceq(X)均为非线性函数组成的向量,其它变量的含义与线性规划、二次规划中相同.用Matlab求解上述问题,基本步骤分三步:153.建立主程序.非线性规划求解的函数是f

7、mincon,命令的基本格式如下:(1)x=fmincon(fun,X0,A,b)(2)x=fmincon(fun,X0,A,b,Aeq,beq)(3)x=fmincon(fun,X0,A,b,Aeq,beq,VLB,VUB)(4)x=fmincon(fun,X0,A,b,Aeq,beq,VLB,VUB,nonlcon)(5)x=fmincon(fun,X0,A,b,Aeq,beq,VLB,VUB,nonlcon,options)(6)x,fval=fmincon(.)(7)x,fval,exitflag=fmincon(.)(8)x,fval,exitflag,output=fmincon(

8、.)输出极值点M文件迭代的初值参数说明变量上下限16注意:注意:1 fmincon函数提供了大型优化算法和中型优化算法。默认时,若在fun函数中提供了梯度(options参数的GradObj设置为on),并且只有上下界存在或只有等式约束,fmincon函数将选择大型算法。当既有等式约束又有梯度约束时,使用中型算法。2 fmincon函数的中型算法使用的是序列二次规划法。在每一步迭代中求解二次规划子问题,并用BFGS法更新拉格朗日Hessian矩阵。3 fmincon函数可能会给出局部最优解,这与初值X0的选取有关。171、写成标准形式写成标准形式:s.t.2x1+3x2 6 s.t x1+4x

9、2 5 x1,x2 0例例2182、先建立先建立M-文件文件 fun3.m:function f=fun3(x);f=-x(1)-2*x(2)+(1/2)*x(1)2+(1/2)*x(2)2MATLAB(youh2)3、再建立主程序youh2.m:x0=1;1;A=2 3;1 4;b=6;5;Aeq=;beq=;VLB=0;0;VUB=;x,fval=fmincon(fun3,x0,A,b,Aeq,beq,VLB,VUB)4、运算结果为:运算结果为:x=0.7647 1.0588 fval=-2.0294191先建立先建立M文件文件 fun4.m,定义目标函数定义目标函数:function f

10、=fun4(x);f=exp(x(1)*(4*x(1)2+2*x(2)2+4*x(1)*x(2)+2*x(2)+1);x1+x2=0 s.t.1.5+x1x2-x1-x2 0 -x1x2 10 0例例32再建立再建立M文件文件mycon.m定义非线性约束:定义非线性约束:function g,ceq=mycon(x)g=x(1)+x(2);1.5+x(1)*x(2)-x(1)-x(2);-x(1)*x(2)-10;203主程序主程序youh3.m为为:x0=-1;1;A=;b=;Aeq=1 1;beq=0;vlb=;vub=;x,fval=fmincon(fun4,x0,A,b,Aeq,beq

11、,vlb,vub,mycon)MATLAB(youh3)3.运算结果为运算结果为:x=-1.2250 1.2250 fval=1.895121 例4 1先建立先建立M-文件文件fun.m定义目标函数定义目标函数:function f=fun(x);f=-2*x(1)-x(2);2再建立再建立M文件文件mycon2.m定义非线性约束:定义非线性约束:function g,ceq=mycon2(x)g=x(1)2+x(2)2-25;x(1)2-x(2)2-7;223.主程序主程序fxx.m为为:x0=3;2.5;VLB=0 0;VUB=5 10;x,fval,exitflag,output =fm

12、incon(fun,x0,VLB,VUB,mycon2)MATLAB(fxx(fun)234.运算结果为运算结果为:x=4.0000 3.0000fval=-11.0000exitflag=1output=iterations:4 funcCount:17 stepsize:1 algorithm:1x44 char firstorderopt:cgiterations:返回返回24应用实例:应用实例:供应与选址供应与选址 某公司有6个建筑工地要开工,每个工地的位置(用平面坐标系a,b表示,距离单位:千米)及水泥日用量d(吨)由下表给出。目前有两个临时料场位于A(5,1),B(2,7),日储量

13、各有20吨。假设从料场到工地之间均有直线道路相连。(1)试制定每天的供应计划,即从A,B两料场分别向各工地运送多少吨水泥,使总的吨千米数最小。(2)为了进一步减少吨千米数,打算舍弃两个临时料场,改建两个新的,日储量各为20吨,问应建在何处,节省的吨千米数有多大?25(一)、建立模型(一)、建立模型 记工地的位置为记工地的位置为(ai,bi),水泥日用量为水泥日用量为di,i=1,6;料场位置料场位置为为(xj,yj),日储量为日储量为ej,j=1,2;从料场从料场j向工地向工地i的运送量为的运送量为Xij。当用临时料场时决策变量为:Xij,当不用临时料场时决策变量为:Xij,xj,yj。26(

14、二)使用临时料场的情形(二)使用临时料场的情形 使用两个临时料场A(5,1),B(2,7).求从料场j向工地i的运送量为Xij,在各工地用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千米数最小,这是线性规划问题.线性规划模型为:设X11=X1,X21=X 2,X31=X 3,X41=X 4,X51=X 5,X61=X 6X12=X 7,X22=X 8,X32=X 9,X42=X 10,X52=X 11,X62=X 12 编写程序gying1.mMATLAB(gying1)27计算结果为:计算结果为:x=3.0000 5.0000 0.0000 7.0000 0.0000 1.0000

15、 0.0000 0.0000 4.0000 0.0000 6.0000 10.0000fval=136.227528(三)改建两个新料场的情形(三)改建两个新料场的情形 改建两个新料场,要同时确定料场的位置(xj,yj)和运送量Xij,在同样条件下使总吨千米数最小。这是非线性规划问题。非线性规划模型为:29设 X11=X1,X21=X 2,X31=X 3,X41=X 4,X51=X 5,X61=X 6 X12=X 7,X22=X 8,X32=X 9,X42=X 10,X52=X 11,X62=X 12 x1=X13,y1=X14,x2=X15,y2=X16 (1)先编写M文件liaoch.m定

16、义目标函数。MATLAB(liaoch)(2)取初值为线性规划的计算结果及临时料场的坐标:x0=3 5 0 7 0 1 0 0 4 0 6 10 5 1 2 7;编写主程序gying2.m.MATLAB(gying2)30(3)计算结果为:x=3.0000 5.0000 0.0707 7.0000 0 0.9293 0 0 3.9293 0 6.0000 10.0707 6.3875 4.3943 5.7511 7.1867fval=105.4626exitflag=131(4)若修改主程序gying2.m,取初值为上面的计算结果:x0=3.0000 5.0000 0.0707 7.0000 0 0.9293 0 0 3.9293 0 6.0000 10.0707 6.3875 4.3943 5.7511 7.1867得结果为:x=3.0000 5.0000 0.3094 7.0000 0.0108 0.6798 0 0 3.6906 0 5.9892 10.3202 5.5369 4.9194 5.8291 7.2852fval=103.4760exitflag=1总的吨千米数比上面

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1