ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:23.99KB ,
资源ID:25700614      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/25700614.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(微波的波长.docx)为本站会员(b****9)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

微波的波长.docx

1、微波的波长微波的波长 微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。微波作为一种电磁波也具有波粒二象性微波量子的能量为1 99l0 -25 19910-22j微波的性质 微波的基本性质通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对金属类东西,则会反射微波。 一、穿透性 微波比其它用于辐射加热的电磁波,如红外线、远红外线等波长更长,因此具有更好

2、的穿透性。微波透入介质时,由于介质损耗引起的介质温度的升高,使介质材料内部、外部几乎同时加热升温,形成体热源状态,大大缩短了常规加热中的热传导时间,且在条件为介质损耗因数与介质温度呈负相关关系时,物料内外加热均匀一致。 二、选择性加热 物质吸收微波的能力,主要由其介质损耗因数来决定。介质损耗因数大的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也弱。由于各物质的损耗因数存在差异,微波加热就表现出选择性加热的特点。物质不同,产生的热效果也不同。水分子属极性分子,介电常数较大,其介质损耗因数也很大,对微波具有强吸收能力。而蛋白质、碳水化合物等的介电常数相对较小,其对微波的吸收能

3、力比水小得多。因此,对于食品来说,含水量的多少对微波加热效果影响很大。 三、热惯性小 微波对介质材料是瞬时加热升温,能耗也很低。另一方面,微波的输出功率随时可调,介质温升可无惰性的随之改变,不存在“余热”现象,极有利于自动控制和连续化生产的需要。 微波的产生 微波能通常由直流电或50MHz交流电通过一特殊的器件来获得。可以产生微波的器件有许多种,但主要分为两大类:半导体器件和电真空器件。电真空器件是利用电子在真空中运动来完成能量变换的器件,或称之为电子管。在电真空器件中能产生大功率微波能量的有磁控管、多腔速战速调管、微波三、四极管、行波管等。在目前微波加热领域特别是工业应用中使用的主要是磁控管

4、及速调管。 微波的热效应 微波对生物体的热效应是指由微波引起的生物组织或系统受热而对生物体产生的生理影响热效应主要是生物体内有极分子在微波高频电场的作用下反复快速取向转动而摩擦生热;体内离子在微波作用下振动也会将振动能量转化为热量;一般分子也会吸收微波能量后使热运动能量增加如果生物体组织吸收的微波能量较少,它可借助自身的热调节系统通过血循环将吸收的微波能量(热量)散发至全身或体外如果微波功率很强,生物组织吸收的微波能量多于生物体所能散发的能量,则引起该部位体温升高局部组织温度升高将产生一系列生理反应,如使局部血管扩张,并通过热调节系统使血循环加速,组织代谢增强,白细胞吞噬作用增强,促进病理产物

5、的吸收和消散等微波的非热效应 微波的非热效应是指除热效应以外的其他效应,如电效应、磁效应及化学效应等在微波电磁场的作用下,生物体内的一些分子将会产生变形和振动,使细胞膜功能受到影响,使细胞膜内外液体的电状况发生变化,引起生物作用的改变,进而可影响中枢神经系统等微波干扰生物电(如心电、脑电、肌电、神经传导电位、细胞活动膜电位等)的节律,会导致心脏活动、脑神经活动及内分泌活动等一系列障碍对微波的非热效应,人们还了解的不很多当生物体受强功率微波照射时,热效应是主要的(一般认为,功率密度在在10mWcm2者多产生微热效应且频率越高产生热效应的阈强度越低);长期的低功率密度(1 m Wcm2 以下)微波

6、辐射主要引起非热效应 微波加热的原理 微波是频率在300兆赫到300千兆赫的电波,被加热介质物料中的水分子是极性分子。它在快速变化的高频点磁场作用下,其极性取向将随着外电场的变化而变化。造成分子的运动秀相互摩擦效应,此时微波场的场能转化为介质内的热能,使物料温度升高,产生热化和膨化等一系列物化过程而达到微波加热干燥的目的。微波杀菌的机理 微波杀菌是利用了电磁场的热效应和生物效应的共同作用的结果。微波对细菌的热效应是使蛋白质变化,使细菌失去营养,繁殖和生存的条件而死亡。微波对细菌的生物效应是微波电场改变细胞膜断面的电位分布,影响细胞膜周围电子和离子浓度,从而改变细胞膜的通透性能,细菌因此营养不良

7、,不能正常新陈代谢,细胞结构功能紊乱,生长发育受到抑制而死亡。此外,微波能使细菌正常生长和稳定遗传繁殖的核酸RNA和脱氧核糖核酸DNA,是由若干氢键松弛,断裂和重组,从而诱发遗传基因突变,或染色体畸变甚至断裂。微波是一种高频率的电磁波,其频率范围约在300300 000MHz(相应的波长为10001cm)在300MHz至300GHz之间它具有波动性、高频性、热特性和非热特性四大基本特性。微波作为一种电磁波也具有波粒二象性微波量子的能量为1 99l0 -25 19910-22j它与生物组织的相互作用主要表现为热效应和非热效应。微波能够透射到生物组织内部使偶极分子和蛋白质的极性侧链以极高的频率振荡

8、,引起分子的电磁振荡等作用,增加分子的运动,导致热量的产生。微波还能够对氢键、疏水键和范德华产生作用,使其重新分配,从而改变蛋白质的构象与活性。生物体的非热特性一 生物效应是微波的重要特性之一,它已成为医学、细胞学等方面研究的一个重要方面,同时它也能为微波理疗或微波手术等方面提供理论依据 随着人们对微波加热技术认识的深入,它已引起了许多科学工作者的关注,并在一些方面进行了深入而广泛的研究。 11 微波的特性 111 选择性加热 物质吸收微波的能力,主要由其介质损耗因数来决定。介质损耗因数大的 物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也 弱。由于各物质的损耗因数存在差异

9、,微波加热就表现出选择性加热的特点。 物质不同,产生的热效果也不同。水分子属极性分子,介电常数较大,其介质 损耗因数也很大,对微波具有强吸收能力。而蛋白质、碳水化合物等的介电常 数相对较小,其对微波的吸收能力比水小得多。因此,对于食品来说,含水量 的多少对微波加热效果影响很大。 112 穿透性 微波比其它用于辐射加热的电磁波,如红外线、远红外线等波长更长,因 此具有更好的穿透性。微波透入介质时,由于介质损耗引起的介质温度的升高, 使介质材料内部、外部几乎同时加热升温,形成体热源状态,大大缩短了常规 加热中的热传导时间,且在条件为介质损耗因数与介质温度呈负相关关系时, 物料内外加热均匀一致。 1

10、13 热惯性小 微波对介质材料是瞬时加热升温,能耗也很低。另一方面,微波的输出功 率随时可调,介质温升可无惰性的随之改变,不存在“余热”现象,极有利于 自动控制和连续化生产的需要。 12 微波的生物效应机制 当微波作用于生物体时,在生物控制系统的作用和调节下,生物体必然要建立新的平衡状态以适应外界电磁环境条件的变化,因此也就必然产生某些生物效应微波的生物效应主要是由微波的热效应,其次是非热效应所引起的 12.1 微波的热效应 微波对生物体的热效应是指由微波引起的生物组织或系统受热而对生物体产生的生理影响热效应主要是生物体内有极分子在微波高频电场的作用下反复快速取向转动而摩擦生热;体内离子在微波

11、作用下振动也会将振动能量转化为热量;一般分子也会吸收微波能量后使热运动能量增加如果生物体组织吸收的微波能量较少,它可借助自身的热调节系统通过血循环将吸收的微波能量(热量)散发至全身或体外如果微波功率很强,生物组织吸收的微波能量多于生物体所能散发的能量,则引起该部位体温升高局部组织温度升高将产生一系列生理反应,如使局部血管扩张,并通过热调节系统使血循环加速,组织代谢增强,白细胞吞噬作用增强,促进病理产物的吸收和消散等 12.1.1 微波的加热优点 微波自身的特性决定了微波具有以下优点: (1)加热迅速,均匀。不需热传导过程,且具有自动热平稳性能,避免过热。 (2)加热质量高,营养破坏少,能最大限

12、度的保持食物的色、香,味,减少食物中维生素的破坏。 (3)安全卫生无污染,对食品的杀菌能力强.因为微波能是控制在金属制成的加热室内和波导管中工作,所以微波泄露被有效的抑制,没有放射线危害及有害气体排放,不产生余热和粉尘污染。既不污染食物,也不污染环境。微波杀菌除了热效应之外还有生物效应,许多病菌在微波加热不到100时就全部被杀死。 (4)节能高效。由于含有水分的物质极易直接吸收微波而发热,没有经过其他中间转换环节,因此除少量的传输损耗外几乎无其他损耗。比一般常规加热省电约30%-50%。 (5)具有快速解冻功能。在微波场中,冻结食品在从内到外同时吸收微波能量,使冻结食品整体发热,容易形成整体均

13、一的解冻,缩短解冻时间,迅速越过一50C - 0这个易发生蛋白质变性、食品变色变味的温度带,以保持食品的品质不致下降。 122 微波的非热效应 微波的非热效应是指除热效应以外的其他效应,如电效应、磁效应及化学效应等在微波电磁场的作用下,生物体内的一些分子将会产生变形和振动,使细胞膜功能受到影响,使细胞膜内外液体的电状况发生变化,引起生物作用的改变,进而可影响中枢神经系统等微波干扰生物电(如心电、脑电、肌电、神经传导电位、细胞活动膜电位等)的节律,会导致心脏活动、脑神经活动及内分泌活动等一系列障碍对微波的非热效应,人们还了解的不很多当生物体受强功率微波照射时,热效应是主要的(一般认为,功率密度在

14、在10mWcm2者多产生微热效应且频率越高产生热效应的阈强度越低);长期的低功率密度(1 m Wcm2 以下)微波辐射主要引起非热效应 13 微波在农业科学上的应用 微波对许多发芽率低或发芽慢的农作物或林术种子都作了催芽试验, 以探索能否提高发芽率。种子含水量对处理效果有明显影响, 一般说来, 低含水率种子受加热处理的影响大, 也能忍受较高温度不致受损。微波具有显著热效应,而且有促进G0细胞进入增殖周期(CarpitaNC& Murray W.N;1976)。另外,胡燕月等(1996)胡萱日等(1995),分别比较研究了微波和热击处理水稻种子的生物学效应,在相同升温(45)下,结果表明微波处理

15、可极显著促进芽活力,热击处理则可以极显著促进根活力 。赖麟与冯鸿(1997)利用50W、200W和500W的微波照射白兰瓜种子,发现200W功率的微波处理可以极显著地提高其发芽率,同时也能显著地提高萌发话力。200w微波处理的种子从萌发24小时起,其淀粉酶含量显著地高于对照,48小时期淀粉酶同工酶有新的酶带产生。说明这一功率的微波能有效地激话白兰瓜种子萌发期的淀粉酶,加速物质和能量的代谢,从而提高种子萌发活力。黄桂琴等(1999)利用105W微波辐射黄瓜种子10s、20s,结果发现提早长出真叶株高增加。处理种子的时闻为30s,促进种子早出苗但随着生长期的延长株高被抑制,叶片数也减少当辐射剂量1

16、05W ,处理种子的时间分刷为85、10s、l4s,促进黄瓜幼苗的主根和侧根增长与脱氲酶活性增加,表明根活力增强杨俊红等(2003;2004)利用正交试验研究了微波处理对白菜种子萌发特性及其耐盐性的影响。结果表明:微波处理前,萌发环境的含盐量对种子发芽率的影响最大,而且含盐量和碱性的影响较显著;经微波处理后,萌发环境的含盐量和碱性对种子发芽率的影响处于次要地位,而且无显著性;优选条件下种子的发芽率比对照组明显提高。 PReddy与D.JMyeoek(2000)应用非破坏性的有效微波照大豆种子30秒钟对种子的生存力、活性有促进作用但对细胞和细胞器结构没有影响。 14 微波的生物效应在医学上的应用

17、 利用微波生物效应可以用来诊断各种肿瘤、胸部疾病、肺气肿、肺水肿,测量动脉血管壁的厚度等。特别是利用微波生物效应治疗肿瘤具有特殊的意义。因为肿瘤组织的血液循环和导热性能比正常组织要差 在受到微波照射肘,肿瘤组织的温升比周围的正常组织通常要高出13。若适当控制加热温度,使肿瘤细胞内温度达到42 uc以上时 即可将癌细胞杀死,而不致伤害健康组织,故利用微波可杀死缺氧和低pH值的抗放射肿瘤细胞。如果将微波热疗与放射性治疗以及化学治疗结台起来,则可收到更好的治疗效果。目前已广泛地开展了实验研究工作,有不少国家和地区正在临床应用 最近几年里,对肝癌和脑部组织癌变进行热疗,并取得了丰富的资料(陈夷等,19

18、99)。我国学者在利用微波治疗肝癌、直肠癌和口腔癌方面已取得了十分明显的成果。另外,将手术刀刃与微波辐射结合在一起,也是一种应用形式。由于微波能量具有自日温和凝血的作用 及在一定的程度上具有灭菌的作用,故这种形式的手术刀特别适用于细血管分布很密的人体组织(陈夷等,1999)。例如眼睛和肝脏的手术过程。目前尚待完善的地方是如何使微波辐射的能量更加集中从而取得更好的效果。同样在医用和医药工业中可以将微波用于灭菌,效果又快又好。此外,用强脉冲功率的做波照射实验动物的脑部使其温度达到42以上,可在数秒钟之内杀死动物并使其脑中的酶系统同时全部均匀地灭活,从而中止了生物化学反应,使脑内的耐热活性物质可保持

19、原来的成分,这样就可用来研究神经化学的特性和功能微波波长约从1米1毫米(相应的频率约从 300兆赫到300吉赫)的电磁波。这段电磁频谱包括分米波、 厘米波和毫米波等波段。在雷达和常规微波技术中,常用拉丁字母代号表示更细的波段划分。以上关于微波的波长或频率范围,是一种传统上的约定。从现代微波技术的发展来看,一般认为短于1毫米的电磁波(即亚毫米波)属于微波范围,而且是现代微波研究的一个重要领域。从电子学和物理学的观点看,微波这段电磁谱具有一些不同于其他波段的特点。微波在电子学方面的特点表现在它的波长比地球上很多物体和实验室中常用器件的尺寸相对要小很多,或在同一量级。这和人们早已熟悉的普通无线电波不

20、同,因为普通无线电波的波长远大于地球上一般物体的尺寸。当波长远小于物体(如飞机、船只、火箭、建筑物等)的尺寸时,微波的特点和几何光学的相似。利用这个特点,在微波波段能制成高方向性的系统(如抛物面反射器)。当波长和物体(如实验室中的无线电设备)的尺寸有相同量级时,微波的特点又与声波相近,例如微波波导类似于声学中的传声筒;喇叭天线和缝隙天线类似于喇叭、箫和笛;谐振腔类似于共鸣箱等。波长和物体尺寸在同一量级的特点,提供了一系列典型的电磁场边值问题。在物理学方面,分子、原子与核系统所表现的许多共振现象都发生在微波的范围,因而微波为探索物质的基本特性提供了有效的研究手段。由于这些特点,微波的产生、放大、

21、发射、接收、传输、控制和测量等一系列技术都不同于其他波段(见微波电子管、微波测量等)。微波成为一门技术科学,开始于20世纪30年代。微波技术的形成以波导管的实际应用为其标志。若干形式的微波电子管(速调管、磁控管、行波管等)的发明,是另一标志。在第二次世界大战中,微波技术得到飞跃发展。因战争需要,微波研究的焦点集中在雷达方面,由此而带动了微波元件和器件、高功率微波管、微波电路和微波测量等技术的研究和发展。至今,微波技术已成为一门无论在理论和技术上都相当成熟的学科,又是不断向纵深发展的学科。微波振荡源的固体化以及微波系统的集成化是现代微波技术发展的两个重要方向。固态微波器件在功率和频率方面的进展,

22、使得很多微波系统中常规的微波电子管已为或将为固体源所取代。固态微波源的发展也促进了微波集成电路的研究。频率不断向更高范围推进,仍然是微波研究和发展的一个主要趋势。60年代激光的研究和发展,已越过亚毫米波和红外之间的间隙而深入到可见光的电磁频谱。利用常规微波技术和量子电子学方法,已能产生从微波到光的整个电磁频谱的辐射功率。但在毫米波红外间隙中的某些频率和频段上,还不能获得足够用于实际系统的相干辐射功率。微波的发展还表现在应用范围的扩大。微波的最重要应用是雷达和通信。雷达不仅用于国防,同时也用于导航、气象测量、大地测量、工业检测和交通管理等方面。通信应用主要是现代的卫星通信和常规的中继通信。射电望

23、远镜、微波加速器等对于物理学、天文学等的研究具有重要意义。毫米波微波技术对控制热核反应的等离子体测量提供了有效的方法。微波遥感已成为研究天体、气象和大地测量、资源勘探等的重要手段。微波在工业生产、农业科学等方面的研究,以及微波在生物学、医学等方面的研究和发展已越来越受到重视(见微波应用、微波能应用、微波医学应用等)。微波与其他学科互相渗透而形成若干重要的边缘学科,其中如微波天文学、微波气象学、微波波谱学、量子电动力学、微波半导体电子学、微波超导电子学等,已经比较成熟。微波声学的研究和应用已经成为一个活跃的领域。微波光学的发展,特别是70年代以来光纤技术的发展,具有技术变革的意义(见微波和射频波

24、谱学)。常用的无线传输介质是微波、激光和红外线,通信介质也称为传输介质,用于连接计算机网络中的网络设备,传输介质一般可分为有线传输介质和无线传输介质!电磁波简介电磁波(Electromagnetic wave):(又称:电磁辐射、电子烟雾)是能量的一种。定义:从科学的角度来说,电磁波是能量的一种,凡是高于绝对零度的物体,都会释出电磁波。 正像人们一直生活在空气中而眼睛却看不见空气一样,除光波外,人们也看不见无处不在的电磁波。电磁波就是这样一位人类素未谋面的“朋友”。产生电磁波是电磁场的一种运动形态。电与磁可说是一体两面,电流会产生磁场,变动的磁场则会产生电流。变化的电场和变化的磁场构成了一个不

25、可分离的统一的场1,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。性质电磁波频率低时,主要借由有形的导电体才能传递。原因是在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部返回原电路而没有能量辐射出去;电磁波频率高时即可以在自由空间内传递,也可以束缚在有形的导电体内传递。在自由空间内传递的原因是在高频率的电振荡中,磁电互变甚快,能量不可能全部返回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去,不需要介质也能向外传递能量,这就是一种辐射。举例来说,太阳与地球之间的距离非常遥

26、远,但在户外时,我们仍然能感受到和煦阳光的光与热,这就好比是“电磁辐射借由辐射现象传递能量”的原理一样。电磁波为横波。电磁波的磁场、电场及其行进方向三者互相垂直。振幅沿传播方向的垂直方向作周期性交变,其强度与距离的平方成反比,波本身带动能量,任何位置之能量功率与振幅的平方成正比。其速度等于光速c(每秒310的8次方米)。在空间传播的电磁波,距离最近的电场(磁场)强度方向相同,其量值最大两点之间的距离,就是电磁波的波长,电磁每秒钟变动的次数便是频率f。三者之间的关系可通过公式c=f。通过不同介质时,会发生折射、反射、绕射、散射及吸收等等。电磁波的传播有沿地面传播的地面波,还有从空中传播的空中波以

27、及天波。波长越长其衰减也越少,电磁波的波长越长也越容易绕过障碍物继续传播。机械波与电磁波都能发生折射反射衍射干涉,因为所有的波都具有波粒两象性.折射反射属于粒子性; 衍射干涉为波动性。能量电磁波的能量大小由坡印庭矢量决定,即S=EH,其中s为坡印庭矢量,E为电场强度,H为磁场强度。E、H、S彼此垂直构成右手螺旋关系;即由S代表单位时间流过与之垂直的单位面积的电磁能,单位是瓦平方米。编辑本段电磁波的计算c=fc:波速(这是一个常量,约等于310的8次方幂m/s) 单位:M/Sf:频率(单位:Hz):波长(单位:M)编辑本段电磁波的发现1864年,英国科学家麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁波理论。他断定电磁波的存在,推导出电磁波与光具有同样的传播速度。 1887年德国物理学家赫兹用实验证实了电磁波的存在。之后,人们又进行了许多实验,不仅证明光是一种电磁波,而且发现了更多形式的电磁波,它们的本质完全相同,只是波长和频率有很大的差别。1、 可观察铁磁材料的共振现象;2、 可测量微波铁氧体的铁磁共振线宽H;3、 测量微波铁氧体的朗德因子g值和驰豫时间;4、 培养学生掌握微波实验系统的调试和测试方法;

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1