1、数学广角植树问答数学广角植树问题课标解读 湖北省武汉市华中师范大学附属小学董艳(初稿)湖北省武汉市教育科学研究院马青山(统稿) 一、课标要求义务教育数学课程标准(2011年版)在“总目标”中提出了“在参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力,清晰地表达自己的想法”“学会独立思考,体会数学的基本思想和思维方式”。义务教育数学课程标准(2011年版)在“学段目标”的“第二学段”中提出“尝试从日常生活中发现并提出简单的数学问题,并运用一些知识加以解决”“能探索分析和解决简单问题的有效方法,了解解决问题方法的多样性”。义务教育数学课程标准(2011年版)在“课程内容
2、”的“第二学段”中提出“通过应用和反思,进一步理解所用的知识和方法,了解所学知识之间的联系,获得数学活动经验”。 二、课标解读教材中设置“数学广角”单元教学内容的目的不是教会学生机械的公式和抽象的模型,而是让学生体验探索建立模型的过程和数学思想方法。在本册的“数学广角植树问题”的教学中,教师要引导学生通过观察、猜测、试验、推理等活动,初步体会解决植树问题的思想方法(模型思想),培养学生从实际问题中探索解决问题有效方法的能力。在教学植树问题时,教师要引导学生根据实际问题情境,从简单的情况入手,在解决问题的分析、思考过程中,逐步发现隐含的规律,经历建立数学模型的过程,帮助学生积累数学活动的经验,提
3、高学生解决实际问题的能力。(一)在观察、猜测、试验、推理等活动中体会解决基本的思想方法小学数学教学体系贯穿着两条主线:数学知识和数学思想方法。数学知识是一条明线,直接呈现在教材上;而数学思想方法则是一条暗线,隐藏在知识的背后。“数学广角”中的“植树问题”,承载了基本的数学思想方法“化繁为简”“数形结合”“一一对应”和“数学建模”等,使学生从中发现规律,抽取出其中的数学模型(点段关系),然后再用发现的规律来解决生活中的一些简单实际问题。1在困顿中感悟“化归”的思想人们在面对数学问题时,如果直接应用已有知识不能或不易解决该问题时,往往将需要解决的问题不断转化形式,把它归结为能够解决或比较容易解决的
4、问题,最终使原问题得到解决,这种思想方法称为化归(转化)思想。在教学例1中,教师引导学生对“100米一共要栽多少棵树”进行验证,在画图时引发困惑,数字太大,不可能全部画下来,或是太麻烦、太浪费时间了。在学生有所体验的基础上,就此向学生渗透复杂问题简单化的思想,让学生选择短距离(20米),用画图的方式得出结果。在这个过程中,学生通过猜想、实验、推理、交流等活动,既培养了数学思想能力,学会了一些解决问题的方法,又逐步形成实事求是的科学态度和精神。2在探究中渗透“数形结合”的思想数形结合是小学数学中常用的、重要的一种数学思想方法。数形结合思想的实质即通过数形之间的相互转化,把抽象的数量关系,通过形象
5、化的方法转化为适当的图形,从图形的结构直观地发现数量之间存在的内在联系,解决数量关系的数学问题,这是数形结合思想。本册的“数学广角植树问题”把从直观图形支持下得到的模型应用到现实生活中,沟通图形、表格及具体数量之间的联系,强化对题意的理解。教师可以组织学生在课堂上“模拟植树”。用 “_”代表一段路,用“”代表一棵树,画“”就表示种了一棵树。关于在20米长的路可以栽多少棵树的问题,让学生自己动手画一画。学生根据图示,很容易发现规律。再从个别的、简单的几个例子出发,逐步过渡到复杂的、更一般的情境中,是数学中常用的推理方法。这个过程中,学生借助数形结合将文字信息与学习基础结合起来,使得学习得以继续,
6、使得学生思维发展有了基础,也使得数学学习的思想方法真正得以渗透。因此,数形结合能不失时机地为学生提供恰当的形象材料,可以将抽象的数量关系具体化,把无形的解题思路形象化。3在抽象中明晰“一一对应”思想本册“数学广角植树问题”的教学,通常有两种教学思路:一种思路是通过教材主题图中得三组实例归纳出规律,利用画图、小棒或圆片的排列来验证规律,进而结合生活实际应用规律。这种教学逻辑性强,规律揭示很顺畅,但是从教学效果看,学生虽然能够“熟记”规律,却不能灵活解决诸如“封闭、不封闭”“两端都栽、只栽一端、两端都不栽”这类问题,更不能用数学观点统领“间隔排列”的现象。另一种思路是在深入钻研教材的基础上,真正把
7、握“间隔排列”的实质:两种物体间隔排列,这两种物体的排列一一对应。对应,是间隔排列的本质。课堂教学中,通过“感知对应现象激活对应思想建构对应思想升华对应思想”层层深入的教学行为,抓住蕴含在教材中得一一对应思想,有效统领种种纷繁复杂的现象,使学生真正感知了一一间隔排列的特点,扫清了思维上的障碍,层层推进认识的完善和引申。4在运用中体验“模型思想”义务教育数学课程标准(2011年版)中提出:在数学教学中应当引导学生感悟建模过程,发展“模型思想”。“数学模型”是数学符号、数学式子以及数量关系对现实原型简化的本质的描述。模型思想的教学,不是作为像具体数学知识点那样可以单独作为一个数学内容来进行专门教学
8、,而是融入到具体数学知识的教学过程中,让学生在经历“问题情境建立模型解决问题拓展运用”的学习过程中逐渐领悟的。在本册“数学广角植树问题”的教学中,教材以“猜想试误合作探究发现规律(建立模型)深化规律(再次建模)解释运用”为主线,渗透数形结合的思想,建立数学模型,发现问题实质,为后面解决问题奠定了坚实的基础。在这样的学习活动中,学生在经历了实物操作、图示表达、抽象概括等程序,逐层提升,拾级而上,一步一步地从生活向数学的内核逼近。在数学抽象时,引导学生逐层深入地进行推理研究,从“20米、30米、35米、100米”,让学生联想到“点数比段数多1”,从而建立起“点线”间关系模型。举一反三,触类旁通。最
9、后,引导学生用发现的规律去解决更多的实际问题(两端都不栽的情况和只栽一端的情况)。这样的教学,也正体现了“数学教学应从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与运用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展”的要求。(二)在观察、猜测、试验、推理等活动中积累基本的数学活动经验义务教育数学课程标准(2011年版)中提出:数学活动经验的积累是提高学生数学素养的重要标志。帮助学生积累数学活动经验是数学教学的重要目标,是学生不断经历、体验各种数学活动过程的结果。数学学习是在“学生主动地从事观察、实验、猜测、验证、推理与交流
10、”等数学活动中进行的。数学活动经验产生于数学学习中,既是数学学习的产物,也是学生认识和实践的基础。1经历观察、操作过程,积累体验性经验 在教学“数学广角”时,教师要引导学生观察、实验、猜想、验证,进行动手操作(如摆、画、做等),让学生逐渐地意会、体验、感悟。为了让学生“动”起来,在“动”的过程中体验知识的形成过程,教材不断地提出问题,抓住数量关系做重点分析。放手让学生想一想、画一画、说一说,既满足了学生的表现欲望,又培养了学生自主探究的能力,充分调动了学生的积极性,把学习的主动权交给了学生。学生对植树棵数和段数的关系有了初步的感性认识后,让学生再任意画一画、种一种,更丰富了学生的感性材料,为学
11、生顺利发现并总结规律打下了基础。在这个过程中,学生慢慢积累分析和解决问题的一些经验,然后将这些经验迁移运用到后面的数学活动中。而这些经验是我们老师没法“教”给学生的,必须由学生经历大量的数学活动逐步获得,也就是我们以前常说的“做中学”之后所留下的,有关数学活动的直接感受、体验和个人感悟。2经历探究、思考过程,积累方法性经验这里的“探究”指的是融行为操作与思维操作于一体的活动。本册的“数学广角植树问题”教材编者意图是让学生初步认识“化繁为简”的思想,并通过各种活动,借助直观图理解“间隔数与棵数”之间的数量关系。如“100米太长了,怎么办?”“如果小路长度不是20米了,树的棵数又发生了什么变化呢?
12、”“25米、30呢?”“不画了,你发现了什么?”不断提出新的要求,产生新的矛盾,使学生的思维处于碰撞之中,掌握解决问题的有效方法。3经历概括、反思过程,积累“数学地思考”的经验概括是形成和掌握概念的直接前提。如果没有概括,就无法进行逻辑推理,思维的深刻性和批判性就无从谈起;没有概括,就不可能产生灵活的迁移,思维的灵活性和创造性就无法形成;没有概括,就无法实现思维的“缩减”与“浓缩”,思维的敏捷性也就无从体现,学生掌握概念,直接受思维概括水平的制约。教师教学时可以在课堂中让学生根据自己的体验,用自己的思维方式去探究,去发现,再反馈结果,根据不同的结果进行交流、讨论。通过学生的观察、思考、交流,在
13、获得直接经验的基础上感受“一一对应”的思想方法是教学活动重中之重。经过学生的探讨之后,教师再引导学生抽象出数学模型(棵数与间隔数的关系),接着再用抽象出来的模型解决一般性的问题,最后再迁移、变通。数学广角植树问题重难点突破 湖北省武汉市华中师范大学附属小学董艳(初稿)湖北省武汉市教育科学研究院马青山(统稿)一、建构数学模型,探寻规律突破建议:本单元是让学生通过生活中的简单事例,初步体会解决植树问题的思想方法,同时培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力,初步培养学生抽取数学模型的能力。教师教学时,应从实际问题入手,引导学生在解决问题的分析、思考过程中逐步发现隐含于不同的情
14、形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决实际问题中的应用。二、初步体会植树问题的数学思想方法突破建议:“数学广角”的教学目的主要是让学生体验知识的形成过程和感悟数学思想方法。本单元并非让学生记熟规律、熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想和方法的一个学习支点。在教学中教师不妨让学生先猜测,再动手操作、实践验证。怎样检验这个结果是否正确?初步向学生渗透用比较简单的例子来验证较为复杂的问题,即化繁为简的思想。例1教学中,假设路长只有20米,要栽几棵树呢?提示学生用画线段图或者示意图的方式来辅助思考,从中渗透“数形结合”的思想。这样学生就很容易地发
15、现直接用除法205=4算出的结果和通过直观图看出的5棵树有冲突,引发学生的思考。还要结合教材中“对吗?检验一下”“可以画线段图来验证”等线索,向学生渗透简单的化归、数形结合、一一对应、模型、推理等数学思想,激发学生对数学的兴趣。三、应用画图策略,有效地解决生活中的植树问题突破建议:在日常教学中,在指导学生学习数学的过程中,帮助学生养成画图的习惯是非常重要的。因此,教师在教学中要重视画线段图的方法,并通过多媒体直观演示辅助教学,突出“一一对应”思想,把间隔点数和栽树的棵数对应起来。之后让学生再用“25 m”或者自己列举的数据进一步探究,教师可以出示统计表,学生将研究结果记录下来,利用统计表发现栽
16、树的棵数和间隔数之间的规律。四、用发现的规律解决生活中的一些简单实际问题突破建议:植树问题的模型是现实世界中一类相近问题的拓展,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,在教学中把植树问题推广到与植树问题相近的一些问题中,以图片、文字等形式让学生了解生活中与植树问题相似的现象,让学生进一步体会现实生活中的许多不同事件(如队列问题、公交站问题、敲钟问题等),这些问题都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决,使学生感悟到数学建模的重要意义。从而引导学生灵活运用所学知识解决生活中的一些实际问题,体验生活中的数学,充分感受到数学知
17、识来源于生活,又回归于生活。但是,也要注意不要对例题进行过多的变式,提高问题的难度,造成教学要求过高。数学广角植树问题教材分析 湖北省武汉市华中师范大学附属小学董艳(初稿)湖北省武汉市教育科学研究院马青山(统稿)和前面几册教材一样,本册也专门安排了“数学广角”单元,向学生渗透了一些重要的数学思想方法。本册的“数学广角植树问题”包含三个例题,主要是渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿一定的路线
18、植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、广场敲钟等,这些问题情境中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中,“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线(如正方形、长方形或圆形等)。即使是关于一条线段的植树问题,也可能有不同的情形(如两端都要栽,只在一端栽另一端不栽,或是两端都不栽)。义务教育数学课程标准(2011年版)强调:“要从学生已有的生活经验出发,让学生亲身经历将实际问题
19、抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展”。教材在编排上,注重引导学生进行观察、猜测、验证、推理等数学活动,使学生初步体会解决植树问题的思想方法(模型思想),培养学生从实际问题中探索解决问题的有效方法的能力。在教学植树问题时,教师要引导学生根据实际问题情境,从简单的情况入手,在解决问题的分析、思考过程中,逐步发现隐含的规律,经历建立数学模型的过程,帮助学生积累数学活动的经验,提高学生解决实际问题的能力。下面就教材中安排的三个典型例题进行分析。一、经历解决问题的过程教材第106页例1通过学生熟悉的植树情境,引导学生借
20、助线段图,经历猜想、实验、抽象等数学活动过程,探索间隔与点之间的数量关系,建立植树问题的数学模型,再运用模型解决实际问题。让学生经历分析、思考、解决问题的全过程。教材用几个小朋友的对话和图片来呈现学生探索解决问题的过程。首先由一个男孩说出学生们可能会想到的答案:“1005=20(棵)”,接着一个女孩问:“对吗?检验一下”,来引发学生思考。接下来由小精灵提出了解决问题的常用方法从简单的情况入手解决复杂的问题。这里先呈现直观的图示法,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时确定树苗数量的问题并不能简单地用除法来解决。紧接着一个小男孩提出“25
21、 m可以栽几棵?”这次用画线段图的方式解决问题,不仅在研究方法上从直观转为抽象,更是向学生渗透归纳思想一个特例不足以说明问题,多个不同的事物才能揭示规律。然后向学生提问:“你发现了什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比间隔数多1。同时教材进一步提出“不画图,你知道30 m、35 m要栽几棵树吗?”让学生利用发现的规律先解决简单的问题。最后教材要求应用发现的规律来解决前面的植树问题:100 m长的小路共有20个间隔,两端都要栽,所以一共要栽21棵树。这样就把分析、思考、解决问题的整个全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。即遇到问题时,可以先给出
22、一个猜测,要判断这个猜测对不对,可以用比较简单的例子来检验,并且可以从简单的事例中发现规律,然后应用找到的规律来解决原来的问题。对于例2(两端不栽的情况)以及第107页“做一做”第2题(一端栽一端不栽的情况),由于学生前面有了探索的经验,这里可以放手让学生去探索,用自己的方法去发现这两种情况的植树问题中隐含的规律。二、体会基本的数学思想本单元通过一些生活中的事例,让学生根据不同的情况总结出规律,并利用这些规律解决问题。但是,本单元的教学最终目的并不只是让学生明白规律,而是要引领学生进一步探究规律的产生原因,帮助其建立“一一对应”的思维方式,形成解决问题的策略,从而体验数学思想方法在解决实际问题
23、中的应用。在“植树问题”中最重要的数学思想就是模型思想,而如何让学生理解从实际问题中抽象出数学模型的过程是教学“植树问题”的难点。为了突破这一难点,教材突出了线段图的教学,通过几何直观帮助学生理解“植树问题”的数学模型。例1是探讨关于一条线段、并且两端都要栽的植树问题,让学生通过画线段图来发现栽树的棵数和间隔数之间的关系。通过这两幅图,让学生把“点”(树)与“线”(间隔)一一对应起来,结果发现还多出一个“点”(树),所以“栽树棵数=间隔数+1”。例2通过迁移呈现出两端都不栽的线段图,“做一做”的第2题让学生通过迁移画出一端栽另一端不栽的线段图。例3则让学生理解在封闭曲线上植树的线段图的画法以及
24、沟通它和一条线段上植树中的一端栽另一端不栽的联系。整个单元教材通过线段图的教学,突出“一一对应”的思想,并以此为基础分析植树问题三种不同的情况,即“两端都栽”“只栽一端”与“两端都不栽”。无论哪种情形,都能用“一一对应”的思想统领。教材通过选取生活中不同的事例,让学生体会一种在数学学习、研究问题上都很重要的数学思想方法化归思想,使学生感悟到应用数学模型解决问题所带来的便利。同时培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力,初步培养学生抽取数学模型的能力。在练习中,教材以“植树问题”为背景帮助学生清楚地认识到路灯问题、敲钟问题、锯木问题等都与“植树问题”有着相同的数学结构,让学
25、生建构相应的数学模型。三、感受转化的研究方法,积累基本的活动经验教材第108页例3讨论的是在封闭图形周围栽树的情形。学生学习了例1、例2后,掌握了直线段中的植树问题(在线段的两端都栽、两端都不栽或只栽一端的情况下,栽的棵数与间隔数的关系)。教材这样的编排意图很显然是要用植树问题的思考方法来解决封闭图形中的植树问题。面对封闭图形中的植树问题,教材首先提示研究方法:“先画图试试看。假设周长是40 m”,引导学生根据前面例1、例2的研究经验直观作图、化繁为简来尝试解决问题。当学生直观看出能栽4棵后,教材并不急于让学生探索出封闭图形植树问题中的规律(即间隔数等于棵数),而是请小精灵进一步提出问题:“如
26、果把圆拉直成线段,你能发现什么?”从而把学生的思维引向深处。让学生通过观察、思考发现,化曲为直后,封闭图形上植树其实可以转化成“一端栽另一端不栽”的情形。接下来,教材通过两位学生的对话“我发现间隔数与树一一对应”“相当于一端栽,一端不栽”,不仅揭示了封闭图形上植树的规律,更是为学生沟通了例3与前面的例1、例2间的联系。本单元注重让学生经历观察、猜测、验证、推理与交流等活动,使学生既学会一些解决问题的一般方法与策略,又积累基本的数学活动经验。例如,例1通过“对吗?检验一下”“100 m太长了,可以先用简单的数试试”“你发现了什么规律”等,渗透了“猜测探索归纳应用”的解决问题的策略和化繁为简的解决
27、问题的方法。五年级上册第七单元“数学广角”教材介绍 人民教育出版社小数室一、教学内容植树问题。本单元内容由原实验教材四年级下册移来,例3调整为封闭曲线上的植树问题。二、教学目标1引导学生通过观察、猜测、试验、推理等活动,初步体会植树问题的模型思想。2通过画线段图初步培养学生探索解决问题有效方法的能力。3让学生尝试用植树问题的方法来解决实际生活中的简单问题,培养学生解决实际问题的能力。三、编排特点1题材更为丰富与原实验教材相比,本次修订后的“植树问题”新增了一些生活中的“植树问题”。如例3探讨在一条封闭曲线上植树的问题。另外,教材在“做一做”和练习中增加了“每两棵梧桐树中间栽一棵银杏树”“马拉松
28、比赛设置饮水点”“项链上的水晶”等实际问题,一方面激发学生的学习兴趣和探究欲望,另一方面帮助学生多角度、有效地体会和运用植树问题的数学思想和方法。2突出线段图的教学,帮助学生直观理解植树问题的数学模型在“植树问题”中最重要的数学思想就是模型思想,而如何让学生理解从实际问题中抽象出数学模型的过程是教学“植树问题”的难点。为了突破这一难点,教材突出了线段图的教学,通过几何直观帮助学生理解“植树问题”的数学模型。例1先画出形象的线段图,然后抽象成线段图表示两端都栽的情况,例2通过迁移呈现出两端都不栽的线段图,“做一做”的第2题,让学生通过迁移画出一端栽另一端不栽的线段图,最后例3让学生理解在封闭曲线
29、上植树的线段图的画法以及沟通它和一条线段上植树中的一端栽另一端不栽的联系。教材通过突出线段图的教学,帮助学生直观理解不同情况下植树棵树、分割点和间隔数之间的关系,由此理解和建立植树问题的数学模型。四、具体编排1例1:一条线段上植树(两端都栽)植树问题教学的重点是解决点和间隔的关系,建立相应的模型。但是当数据比较大时,不利于学生发现规律,所以教材编排上体现了化繁为简和建模的思想。例1是关于一条线段上的植树问题并且两端都要栽树的情况,让学生在解决这个问题的过程中发现规律,找到解决问题的有效方法,经历解决问题的过程。(1)渗透化繁为简的思想,经历解决问题的过程通过学生的话“100 m太长了,可以先用
30、简单的数试试”渗透化繁为简的解决问题的方法,接下来的编排渗透了“猜测探索归纳应用”的解决问题的策略。(2)重点培养学生借助线段图建立数学模型的能力教材呈现学生用画示意图或线段图的方法帮助思考,通过观察两端都栽树的示意图或线段图,把分割点和栽树的棵树一一对应起来,发现并初步总结栽树的棵数与间隔数之间的关系。再让学生在30 m、35 m上加以验证,从而建立起一条线段两端都栽这类植树问题的数学模型。从而找到解决问题的方法。2例2:一条线段上植树(两端都不栽)例2是关于一条线段的植树问题的另一种情况,即两端都不栽树的情况。教材继续通过画线段图的方法帮助学生分析、理解,找出一般规律来解决问题,突出学生的
31、迁移能力培养。有了例1的基础,可以放手让学生独立思考。学生自然会想到借助线段图来分析,教材呈现学生画线段图进行分析,发现当两端都不栽树时,植树的棵数比间隔数少1,然后利用发现的规律解决例题的问题。一端栽另一端不栽的情况放在“做一做”第2题让学生自己探究。通过画线段图,可以与例1、例2的对比来获得对这一基本模型的理解,同时运用发现的规律解决要求的问题。3例3:封闭曲线上植树(1) 突出画图的策略例3是在一条首尾封闭的曲线上植树的问题。编排思路和例1相同,继续渗透化繁为简的思想和画图的策略。借助图示探索规律,建立模型。(2)注重模型的对比与沟通通过小精灵的问题“如果把圆拉直成线段,你能发现什么?”
32、启发学生联系已有的知识找出这种植树问题的规律,即栽树的棵树正好等于间隔数,也就相当于一条线段上植树的一端栽另一端不栽的情况,渗透转化的数学思想。五、教学建议1经历建模的过程,感悟思想方法“数学广角”的教学目的主要是让学生体验知识的形成过程和感悟数学思想方法。具体到本单元,教学时,教师应从实际问题入手,引导学生在解决问题的分析、思考过程中逐步发现隐含于不同的情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决实际问题中的应用。比如例1的教学,可以让学生经历猜想、实验、归纳、推理的过程,渗透简单的化归、数形结合、一一对应、模型、推理等数学思想,激发学生学习数学的兴趣。2突出画图(线段图)的策略几何直观是课标的核心概念之一,帮助学生养成画图的习惯是非常重要的。本单元通过画示意图或线段图来解决植树问题,可以
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1