ImageVerifierCode 换一换
格式:DOCX , 页数:22 ,大小:26.75KB ,
资源ID:25356099      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/25356099.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高强度双网络水凝胶的增韧机理.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

高强度双网络水凝胶的增韧机理.docx

1、高强度双网络水凝胶的增韧机理高强度双网络水凝胶的增韧机理 P O G E S S HE MIS T Y IN C DOI :10. 7536/PC131212 高强度双网络水凝胶的增韧机理 朱 琳 1 * 陈强 1 徐昆 2 (1河南理工大学材料科学与工程学院材料重点实验室长春130022) 摘 焦作454000; 2中国科学院长春应用化学研究所生态高分子 要双网络水凝胶(DN 凝胶)是由具有很强的结构非对称性的两种聚合物形成的特殊的聚合物互穿 DN 凝胶的机械强度和韧性都有惊人的提高,网络。相对于单一聚合物网络(SN 凝胶)而言,其拉伸断裂 23 m 2。DN 凝应力和断裂应变分别能达到1

2、10MPa 和1000% 2000% 、韧性(撕裂能)可以达到10 10 J 胶性能的提高,主要是由强对称结构的第一重网络(刚而脆)与第二重网络(软而韧)相互缠结和互穿的 结果。对DN 凝胶断裂过程和增韧本质的理解是设计下一代具有理想机械性能的DN 凝胶的关键所在。 Thomas 断裂理论是没一些DN 凝胶表现出大的滞后、屈服、细颈和软化现象,而这些现象用经典的Lake-Brown 和Tanaka 等提出了“破坏区”有办法解释的。根据DN 凝胶的滞后和细颈等实验现象,理论来解释 DN 凝胶超乎寻常的高韧性。最近,龚剑萍等提出的“牺牲键”理论也已经很好地应用于设计和制备具有新型微纳米结构的高韧性

3、DN 凝胶。本文着重阐释了DN 凝胶的增韧机理,总结了这一领域的最新研究成果,并讨论各种因素对凝胶韧性的影响,最后对DN 凝胶增韧机理存在的问题和研究方向进行了展望。关键词 高强度双网络水凝胶增韧机理 1032-07281X (2019)06-中图分类号:O631文献标识码:A 文章编号:1005- Toughening Mechanisms of High Strength Double Network Hydrogels * Zhu Lin 1 Chen Qiang 1 Xu Kun 2 (1School of Material Science and Engineering ,Henan

4、 Polytechnic University ,Jiaozuo 454000,China ;2Key Laboratory of Polymer Ecomaterials ,Changchun Institute of Applied Chemistry ,Chinese Academy of Sciences ,Changchun 130022,China )Abstract Double network hydrogels (DN gels )are unique interpenetrating polymer networks consisting of two kinds of p

5、olymer networks with strong asymmetric structureCompared to single network hydrogels ,DN gels exhibit extremely high strength (fracture tensile stress of 1 10 MPa and strain of 1000% 2000%)and toughness m 2),due to their contrasting network structures where the first ,brittle (tearing fracture energ

6、y of 102 10 3J polyelectrolyte network is strongly entangled and interpenetrated with the second ,soft ,neutral polymer networkFundamental understanding of the fracture process and toughening mechanisms of DN gels is critical for rational design of the next-generation of tough DN gels with desirable

7、 mechanical propertiesSome DN gels illustrate 收稿:2019年12月,收修改稿:2019年1月,网络出版:2019年5月25日 *国家自然科学基金委-河南省人才培养联合基金项目(NoU1304516)、国家自然科学基金项目(No21004065)、河南省教育厅项目(No13A430015,12B430007)和河南理工大学项目(NoB2019-6、Q2019-11、Q2019-12A 和MEM11-13)资助 The work was supported by the Joint Foundation for Fostering Talents o

8、f NSFC-Henan Province (NoU1304516),the National Nature Science Foundation of China (No21004065),the Science and Technology esearchProject of Education Department of Henan Province (No13A430015,12B430007),and the Foundation of Henan Polytechnic University (NoB2019-6,Q2019-11,Q2019-12A and MEM11-13)Co

9、rresponding author e-mail :qiangcheneric163com http :/wwwprogchemaccn Progress in Chemistry ,2019,26(6):1032 1038 large hysteresis ,yielding /neckingand softening phenomena ,which cant be well interpreted by classical Lake-Thomas theoryBased on these experimental facts ,Brown and Tanaka had suggeste

10、d a “Damage Zone ”model to explain the extraordinary high toughness of DN gelsecently,“sacrificial bonds ”theory ,which proposed by Gong s group ,has been well applied to design and prepare high toughness DN gels with novel nano-/microstructuresIn the present of review ,we focus on the toughening me

11、chanisms of DN gelsThe latest finding in this field are summarized ,and the effect factors on toughness are discussedIn the end ,the problems and research directions of the mechanisms of DN gels are pointed outKey words Contents 122. 12. 22. 333. 13. 244. 14. 24. 34. 45 Introduction Experimental fac

12、ts for toughening mechanisms of double network hydrogels Hysteresis Yielding and necking Softening Toughening hydrogels Brown-tanaka model Sacrificial bonds theory Influence factors on toughness of double network First network Second network Between the two network Others Conclusion and perspective

13、mechanisms of double network high strength ;double network hydrogels ;toughening mechanisms 非对称性的两种聚合物网络形成的一种特殊聚合物 4 互穿网络(IPN )。DN 凝胶与普通IPN 凝胶有着明显的差异,主要表现在机械性能和结构组成两个 DN 凝胶具有非常优异方面。从机械性能上来看, 的机械性能,其拉伸断裂应力和应变分别为1 10MPa 和1000% 2000%、压缩断裂应力和应变分 2别为20 60MPa 和90% 95%、撕裂能为10 103J m 2,而普通IPN 水凝胶的机械性能并无明显 D

14、N 凝胶采用两种具有增强。从结构组成上来看,强烈反差性质的聚合物网络,而普通IPN 凝胶的形成并无特殊要求。双网络水凝胶的制备通常采用两 8,9 :首先,步聚合法制备高交联度的强聚电解质水凝胶;其次,将上述水凝胶浸泡在含有中性单体、少量交联剂和光引发剂的第二网络预反应溶液中充分 溶胀;最后,光引发聚合形成松散交联的第二网络即Gong 等10发明了“分子支得到DN 凝胶。最近, 11 架”的方法,本研究组发明了“一锅煮”法开拓了双网络凝胶的制备方法,各种新的制备方法带来一系列新型结构的高机械性能双网络凝胶,如微凝胶 121314 增强凝胶、空穴DN 凝胶、反向DN 凝胶、 16Jellyfish

15、 凝胶15、液晶DN 凝胶、层状双层膜DN 17 Agar /PAAmDN 凝胶11等。DN 凝胶优异凝胶、 1引言 指甲和骨骼外,其他都是由软组人体除了牙齿、 织组成。一些受力的软组织如筋、软骨、韧带、肌肉等,虽然含有30% 80%的水份,却表现出诸多非常优异的机械性能如坚韧、抗冲击、低摩擦等。水凝胶是由亲水性聚合物构成的高分子三维网络,它可以吸附大量的水,且吸水后柔软并有一定弹性,这一特性与生物体软组织有很多相似性,使得水凝胶在 1 组织工程领域有着广泛的潜在应用。然而,人工合成的水凝胶通常存在凝胶强度低、韧性差和吸水速度慢等缺点,无法满足使用的要求。研究者针对提高水凝胶的力学性能开展了大

16、量的研究工作,开发了几类具有优异机械性能的新型凝胶,即拓扑型 234水凝胶、纳米复合水凝胶、双网络水凝胶、 6 treta-PEG 水凝胶5、大分子微球交联的凝胶和疏 的机械性能使其在生物材料领域,特别是人造软骨、人工肌肉等受力软组织替代方面有着广阔的应用 9 前景。 材料发生断裂或破坏要经历两个过程,即起始的裂缝形成和裂缝的发展。因此,为了得到高强度的凝胶,可以通过阻止裂缝的形成或抑制裂缝的发展来实现。在已报道的高强度凝胶中,一类是以tetra-PEG 凝胶为代表的均相体系,一类是以双网络PEG 凝胶的压缩凝胶为代表的非均相体系。tetra-强度达到几十兆帕,但其撕裂能与普通化学交联水 18

17、凝胶的撕裂能相当,说明均相体系能抑制起始形成裂缝的可能性(提高凝胶的断裂应力和断裂应4 变),但对韧性的提高贡献有限。龚剑萍等报道 水缔合凝胶 等。 双网络水凝胶(DN 凝胶)是由具有很强的结构 7 2019,26(6):1032 1038化学进展,1033 的DN 凝胶是典型的非均相凝胶体系,相对于单一聚合物网络(SN 凝胶)而言,凝胶的机械强度和韧性都有惊人的提高。DN 凝胶的增强增韧机理引起 919 了人们极大的研究兴趣。龚剑萍等、陈咏梅等已经对近年来出现的新型结构DN 凝胶进行了总结,不再赘述。本文将着重讨论DN 凝胶的增强增韧机理,总结这一领域的最新研究成果,讨论各种因素对凝胶韧性的

18、影响,并对DN 凝胶增强增韧机理存在的问题和研究方向进行展望。 图1Fig1 2 2. 1 双网络水凝胶增韧理论的实验基础 滞后 PAMPS /PAAmDN 凝胶同一凝胶样品连续循环压 20 缩加载曲线 Successive loading cycles of PAMPS /PAAmDN Thomas 理论认为一般交联的聚合经典的Lake-物在破坏时,只有在裂缝尖端的聚合物链发生断裂。在聚合物的化学键断裂之前,能量储存是弹性的,在应力-应变曲线上没有滞后现象。这种理论可以很好地解释单一聚合物网络的断裂行为,但不能解释 20 DN 凝胶的实验现象。Creton 等对PAMPS /PAAm DN

19、凝胶进行循环加载实验时发现了不同于普通化学交联水凝胶的现象。如图1所示,同一凝胶样品连续施加了三次循环加载,第一次循环压缩后(biax =1. 35),在-曲线上可以发现有明显的滞后环;当一周后提高压缩程度(biax =1. 55),滞后环变的更大,并且当biax 1. 35时加载曲线与第一次循环压缩实验的卸载曲线重合;两周以后再进行第三次循环压缩时(biax 1. 55),滞后环几乎难以观察到。PAMPS /PAAmDN 凝胶第一次加载时的大滞后环现象说明在凝胶形变过程中伴有有效的能耗耗散,在循环拉伸实验中也发现了类似循环压缩实验的现象,这种滞后现象在其他DN 凝胶体系中也都有发现。 DN

20、凝胶在第一次循环加载时出现明显的滞后环(图1灰色线),在不增加应变的情况下,第二次加载的滞后环基本消失(图1蓝色线)。DN 凝胶的这种第一次和第二次循环加载滞后现象明显不同的现象与粒子增强橡胶体系观察到的“Mullins effect ”非常相似。但是,粒子增强橡胶与DN 凝胶相比,样品的恢复性和第二次滞后现象具有明显的差异。粒子增强橡胶的“Mullins effect ”是可恢复的,将第一次加载的橡胶样品放置一段时间后,样品的循环加载曲线又与第一次加载的曲线重合,而DN 凝胶无法恢复。另外,粒子增强橡胶的第二次加载的滞后现象仍然比较明显,而DN 凝胶第二次压缩的滞后 环则非常小。 1034

21、gels in compression of the same gel sample (reproduced with permission from the literature 20) 2. 2屈服和细颈龚剑萍等 21 在PAMPS /PAAmDN 凝胶体系中 发现了屈服现象,并且首次在水凝胶体系中发现了细颈现象。如图2所示,凝胶第一次拉伸过程中的应力-应变曲线与普通水凝胶明显不同,整条曲线随应变增大可分为弹性区、屈服点、细颈区和应变硬化区。与应力-应变曲线相对应的凝胶样品拉伸时的照片显示,凝胶具有明显的细颈现象。除了PAMPS /PAAm DN 凝胶体系外,龚剑萍课题组还发现微凝胶增强凝

22、胶 ,空穴DN 凝胶14,液晶DN 凝胶17 18 和层状双层膜DN 凝胶等凝胶体系都具有屈服 22 12 现象。Suo 等在基于钙离子交联的海藻酸钠与 PAAm 形成的离子键和共价键协同交联的DN 凝胶中也发现了屈服现象。最近,本课题组在Agar /PAAm DN 凝胶体系中发现了屈服现象的同时也发现了细颈现象,这也是目前报道中发现的第二个具 11 有细颈现象的DN 凝胶体系。这些都能说明屈服现象在DN 凝胶中是普遍存在的现象。2. 3软化 PAMPS /PAAmDN 凝胶在第二次如图2所示, 拉伸时其应变能达到近20左右,但凝胶不再有屈服,并且凝胶的杨氏模量只有第一次拉 21 。这伸时的十

23、分之一(即损失90%起始的模量)和细颈现象 种杨氏模量严重下降的现象称为软化。软化的DN 凝胶虽然模量低,但却表现出橡胶弹性性质的超拉伸现象。尽管软化DN 凝胶在外观上看与细颈前的样品并无差别,但它的内部结构已然发生了不可逆的改变。研究还发现,尽管细颈前样品已经溶胀平 21,23 。衡,但软化DN 凝胶还可以进一步溶胀 Progress in Chemistry ,2019,26(6):1032 1038 8 图3Fig3 图2Fig. 2necking PAMPS /PAAmDN 凝胶单轴拉伸时的应力-应变曲 8 DN 凝胶裂缝尖端的破坏区示意图 Illustration of local

24、damage zone at the crack front of DN gels 线和细颈现象 Stress-strain curves during uniaxial tensile and phenomenon of PAMPS /PAAm DN gels h =G 0/U (c )G 0E st /c 2 E st 是细U (c )是裂缝增长释放的弹性能,其中, 颈完成时的应变所对应的弹性模量。根据实验的数 据,估算得到的软化区厚度h 大约是100m 。3. 2“牺牲键”理论 同样基于PAMPS /PAAmDN 凝胶的滞后和细颈现象,龚剑萍等提出了DN 凝胶在形变过程中凝胶结构变化的整

25、个图像,他们认为在DN 凝胶第一 PAMPS 第一重网络发生了破裂次拉伸形变过程中, 形成小块儿,这些PAMPS 的小碎块是PAAm 第二重 网络的物理交联剂,软化DN 凝胶在形变过程中可以通过链滑动来调整交联点间的分子量而表现出大 21 形变。PAMPS 第一重网络的破碎过程伴随着能。当施加更大的应力时,量耗散,被视为“牺牲键” 软化DN 凝胶内部的PAMPS 小碎块可以进一步发生破裂,凝胶的应力不均匀性可以通过这种再次破裂而被校正,从而使得软化DN 凝胶的结构表现出PAMPS 小碎块的尺寸远大较少的机械缺陷。另外,于分子尺度,这些小碎块都是被很多PAAm 长链互穿的。 最近,龚剑萍课题组对

26、PAMPS /PAAmDN 凝胶的第一重网络的破裂细节进行了研究,进一步加深 23 了对DN 凝胶增韧机理的理解。根据凝胶单轴拉伸的应力-应变曲线(如图2凝胶第一次拉伸曲 necking )、线),可以把整条曲线分为细颈前(pre-细 (reproduced with permission from the literature 8) 3 3. 1 双网络水凝胶的增韧机理 Brown-Tanaka 增韧模型 PAMPS /PAAmDN 凝胶的撕裂实验表明,凝胶 232 的撕裂能(T )为10 10J m (与天然橡胶的撕 02 裂能相当),是普通PAAm 凝胶(10J m )或PAMPS 凝胶

27、(101J m 2)的100 1000倍24。另 T 值与凝胶的撕裂速度几乎无关。DN 凝胶的这外, 些性质用常规的黏性耗散理论和本体黏弹损耗理论都是无法解释的。 基于PAMPS /PAAmDN 凝胶的滞后和细颈现Brown 25和Tanaka 26分别提出了一种类似的唯象, 象理论模型来解释DN 凝胶超乎寻常的韧性。这种模型认为:在强烈拉伸区域的裂缝尖端会发生类似DN 凝胶拉伸过程中的细颈现象,从而形成一个“破(厚度为h ,坏区”如图3),这个破坏区是软化的DN 凝胶,具有低模量和大形变的性质;当进一步拉伸时,裂缝尖端必须经过这一破坏区裂缝才能发展。 Tanaka 26认为DN 凝胶的有效断

28、裂能(G )与凝胶的屈服应力(c )、细颈完成时的应变(c )、软化凝胶固有的断裂能(G 0)以及软化区的厚度(h )有关,即: G =G 0+c c h 在G 0和c 固定的情况下,单位裂缝增长所需达 到的临界软化区厚度h 可以通过由下面的公式计算得到: 2019,26(6):1032 1038化学进展, 颈(necking )和硬化(hardening )三个区域。通过定量分析凝胶样品的连续循环加载实验和再溶胀行 为,可以发现:(a )第一重网络PAMPS 的起始破坏应变远小于屈服应变,且在屈服点时90%的PAMPS 有效弹性链全部断裂;(b )尽管软化主要发生在细 1035 颈前,但内部

29、破碎过程主要发生在细颈和硬化区;(c )内部破碎效率是非常高的,有85%的功用于内部的第一重网络的断裂,在样品断裂的时候,有9%的PAMPS 链发生了断裂;(d )内部破碎是各向异性的,破碎发生在垂直于拉伸方向上,并且PAMPS 第一重网络的破碎经历了从连续相到非连续相的转变。 2+ Alginate /PAAm凝胶,该凝一重网络,制备了Ca -2 胶具有非常高的撕裂能( 9000J m ),他们认为 其超乎寻常韧性的原因是共价交联造成的裂纹桥联与离子交联解拉链过程造成的滞后的协同作用。4. 2 第二重网络 根据制备高性能DN 凝胶的优化条件,第二重网络的聚合物要具有软而韧的性质,而符合这一要

30、求的通常是一些中性聚合物如聚丙烯酰胺(PAAm )4,11,15,22、N-聚(N ,二甲基丙烯酰胺) 3132(PDMAAm )30,、双烯改性聚乙二醇(DAPEG ) 4双网络水凝胶韧性的影响因素 构成DN 凝胶的两个聚合物网络在聚合物性质 和网络结构上都具有非常强的非对称性,龚剑萍等总结大量实验数据提出了制备高性能DN 凝胶的优 8,9 :(1)刚而脆的聚合物(通常是强聚电解化条件 质)为第一重网络,软而韧的聚合物(如中性聚合 物)为第二重网络;(2)第一重网络的摩尔浓度通常是第二重网络的20 30倍;(3)第一重网络需要紧密交联而第二重网络需要松散交联,并且第二重网络要形成高分子量的聚

31、合物。DN 凝胶的韧性受到两重网络的结构和两重网络间的化学反应、缠结与相互作用,以及其他因素包括溶剂、纳米复合和第三组分等因素的影响,下面将分别进行讨论。4. 1第一重网络 DN 凝胶通常采用两步聚合法进行制备,如果采用中性的聚合物,则难以得到强度和韧性有效提 DN 凝胶的第一重网络通常高的凝胶材料。因此, 是强聚电解质水凝胶,这种凝胶才能在接下来的溶胀过程中大幅溶胀而吸附大量的第二网络预反应溶 27 液来保证满足优化条件的第二条。Xin 等研究发现第一重网络交联剂含量越高(单体浓度固定)或 DN 凝胶的撕裂单体浓度越大(交联剂含量固定), DN 凝胶的韧性与第一能越大,并且符合线性关系, 28 重网络的韧性是线性相关的。Nakajima 等以具PEG 水凝胶为第一重有近似理想均相网络的treta-TPEG /PAAm网络,采用“分子支架”方法制备了St-DN 凝胶,其优异的机械性能说明第一重

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1