1、三角函数公式word资料8页第一部分 三角函数公式一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)春秋谷梁传疏曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之一。韩非子也有云:“今有不才之子师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。 tan(+)=(tan+tan)/(1-tantan) tan(-)=(tan-tan)/(1+tantan) 和差化积公式: sin+sin=2sin(+
2、)/2cos(-)/2 sin-sin=2cos(+)/2sin(-)/2 cos+cos=2cos(+)/2cos(-)/2 cos-cos=-2sin(+)/2sin(-)/2 积化和差公式: sincos=(1/2)sin(+)+sin(-) cossin=(1/2)sin(+)-sin(-) coscos=(1/2)cos(+)+cos(-) sinsin=-(1/2)cos(+)-cos(-) 倍角公式: sin(2)=2sincos=2/(tan+cot) cos(2)=(cos)2-(sin)2=2(cos)2-1=1-2(sin)2 tan(2)=2tan/(1-tan2) c
3、ot(2)=(cot2-1)/(2cot) sec(2)=sec2/(1-tan2) csc(2)=1/2*seccsc 三倍角公式: sin(3) = 3sin-4sin3 = 4sinsin(60+)sin(60-) cos(3) = 4cos3-3cos = 4coscos(60+)cos(60-) tan(3) = (3tan-tan3)/(1-3tan2) = tantan(/3+)tan(/3-) cot(3)=(cot3-3cot)/(3cot2-1) n倍角公式: sin(n)=ncos(n-1)sin-C(n,3)cos(n-3)sin3+C(n,5)cos(n-5)sin5
4、- cos(n)=cosn-C(n,2)cos(n-2)sin2+C(n,4)cos(n-4)sin4- 半角公式: sin(/2)=(1-cos)/2) cos(/2)=(1+cos)/2) tan(/2)=(1-cos)/(1+cos)=sin/(1+cos)=(1-cos)/sin cot(/2)=(1+cos)/(1-cos)=(1+cos)/sin=sin/(1-cos) sec(/2)=(2sec/(sec+1) csc(/2)=(2sec/(sec-1) 辅助角公式: Asin+Bcos=(A2+B2)sin(+)(tan=B/A) Asin+Bcos=(A2+B2)cos(-)
5、(tan=A/B) 万能公式 sin(a)= (2tan(a/2)/(1+tan2(a/2) cos(a)= (1-tan2(a/2)/(1+tan2(a/2) tan(a)= (2tan(a/2)/(1-tan2(a/2) 降幂公式 sin2=(1-cos(2)/2=versin(2)/2 cos2=(1+cos(2)/2=covers(2)/2 tan2=(1-cos(2)/(1+cos(2) 三角和的三角函数: sin(+)=sincoscos+cossincos+coscossin-sinsinsin cos(+)=coscoscos-cossinsin-sincossin-sinsi
6、ncos tan(+)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan) 其它公式 1+sin(a)=(sin(a/2)+cos(a/2)2 1-sin(a)=(sin(a/2)-cos(a/2)2 csc(a)=1/sin(a) sec(a)=1/cos(a) cos30=sin60 sin30=cos60 推导公式 tan+cot=2/sin2 tan-cot=-2cot2 1+cos2=2cos2 1-cos2=2sin2 1+sin=sin(/2)+cos(/2)21+sin(a)=(sin(a/2)+cos(a/2)2 1-sin(a)
7、=(sin(a/2)-cos(a/2)2 csc(a)=1/sin(a) sec(a)=1/cos(a) cos30=sin60 sin30=cos60 推导公式 tan+cot=2/sin2 tan-cot=-2cot2 1+cos2=2cos2 1-cos2=2sin2 1+sin=sin(/2)+cos(/2)2唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者
8、则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。 转洛必达公式+泰勒公式+柯西中值定理+罗尔定理 来源: 王艺璇的日志 这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。要求学生抽空抄录并且阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、
9、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。如此下去,除假期外,一年便可以积累40多则材料。如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗? 洛必达法则洛必达法则(LHospital法则),是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。 设 (1)当xa时,函数f(x)及F(x)都趋于零; (2)在点a的去心邻域内,f(x)及F(x)都存在且F(x)0; (3)当xa时lim f(x)/F(x)存在(或为无穷大),那么 xa时 lim f(x)/F(x)=lim f(x)/F(x)。 再设 (1)当x时,函数f(x)及F(x)都趋于零;
10、 (2)当|x|N时f(x)及F(x)都存在,且F(x)0; (3)当x时lim f(x)/F(x)存在(或为无穷大),那么 x时 lim f(x)/F(x)=lim f(x)/F(x)。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: 在着手求极限以前,首先要检查是否满足0/0或/型未定式,否则滥用洛必达法则会出错。当不存在时(不包括情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定
11、要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 泰勒公式(Taylors formula) 泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和: f(x)=f(x.)+f(x.)(x-x.)+f(x.)/2!*(x-x.)2,+f(x.)/3!*(x-x.)3+f(n)(x.)/n!*(x-x.)n+Rn 其中Rn=f(n+1)()/(n+1)!*(x-x.)(n+1),这里在x和x.之间,该余项称为拉格朗日型的余项。 (注:f(n)(x.)是f(x.)的n
12、阶导数,不是f(n)与x.的相乘。) 证明我们知道f(x)=f(x.)+f(x.)(x-x.)+(根据拉格朗日中值定理导出的有限增量定理有limx0 f(x.+x)-f(x.)=f(x.)x),其中误差是在limx0 即limxx.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式: P(x)=A0+A1(x-x.)+A2(x-x.)2+An(x-x.)n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足P(x.)=f(x.),P(x.)=f(x.),P(x.)=f(x.),P(n)(x.)=f(n)(
13、x.),于是可以依次求出A0、A1、A2、An。显然,P(x.)=A0,所以A0=f(x.);P(x.)=A1,A1=f(x.);P(x.)=2!A2,A2=f(x.)/2!P(n)(x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得:P(x)=f(x.)+f(x.)(x-x.)+f(x.)/2!?(x-x.)2+f(n)(x.)/n!?(x-x.)n. 接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn(x.)=Rn(x.)=Rn(n)(x.)=0。根据柯西中值定理可得
14、Rn(x)/(x-x.)(n+1)=(Rn(x)-Rn(x.))/((x-x.)(n+1)-0)=Rn(1)/(n+1)(1-x.)n(注:(x.-x.)(n+1)=0),这里1在x和x.之间;继续使用柯西中值定理得(Rn(1)-Rn(x.))/((n+1)(1-x.)n-0)=Rn(2)/n(n+1)(2-x.)(n-1)这里2在1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)(n+1)=Rn(n+1)()/(n+1)!,这里在x.和x之间。但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,
15、于是得Rn(n+1)(x)=f(n+1)(x)。综上可得,余项Rn(x)=f(n+1)()/(n+1)!?(x-x.)(n+1)。一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。 麦克劳林展开式:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和: f(x)=f(0)+f(0)x+f(0)/2!?x2,+f(0)/3!?x3+f(n)(0)/n!?xn+Rn 其中Rn=f(n+1)(x)/(n+1)!?x(n+1),这里01。 证明:如果我们要用一个多项式P(x)=A0+A1x+A2x2
16、+Anxn来近似表示函数f(x)且要获得其误差的具体表达式,就可以把泰勒公式改写为比较简单的形式即当x.=0时的特殊形式: f(x)=f(0)+f(0)x+f(0)/2!?x2,+f(0)/3!?x3+f(n)(0)/n!?xn+f(n+1)()/(n+1)!?x(n+1) 由于在0到x之间,故可写作x,01。 麦克劳林展开式的应用: 1、展开三角函数y=sinx和y=cosx。 解:根据导数表得:f(x)=sinx , f(x)=cosx , f(x)=-sinx , f(x)=-cosx , f(4)(x)=sinx 于是得出了周期规律。分别算出f(0)=0,f(0)=1, f(x)=0,
17、 f(0)=-1, f(4)=0 最后可得:sinx=x-x3/3!+x5/5!-x7/7!+x9/9!-(这里就写成无穷级数的形式了。) 类似地,可以展开y=cosx。 2、计算近似值e=lim x (1+1/x)x。 解:对指数函数y=ex运用麦克劳林展开式并舍弃余项: ex1+x+x2/2!+x3/3!+xn/n! 当x=1时,e1+1+1/2!+1/3!+1/n! 取n=10,即可算出近似值e2.7182818。 3、欧拉公式:eix=cosx+isinx(i为-1的开方,即一个虚数单位) 证明:这个公式把复数写为了幂指数形式,其实它也是由麦克劳林展开式确切地说是麦克劳林级数证明的。过
18、程具体不写了,就把思路讲一下:先展开指数函数ez,然后把各项中的z写成ix。由于i的幂周期性,可已把系数中含有土i的项用乘法分配律写在一起,剩余的项写在一起,刚好是cosx,sinx的展开式。然后让sinx乘上提出的i,即可导出欧拉公式。有兴趣的话可自行证明一下。 泰勒展开式原理e的发现始于微分,当 h 逐渐接近零时,计算 之值,其结果无限接近一定值 2.71828.,这个定值就是 e,最早发现此值的人是瑞士著名数学家欧拉,他以自己姓名的字头小写 e 来命名此无理数. 计算对数函数 的导数,得 ,当 a=e 时, 的导数为 ,因而有理由使用以 e 为底的对数,这叫作自然对数. 若将指数函数 e
19、x 作泰勒展开,则得 以 x=1 代入上式得 此级数收敛迅速,e 近似到小数点后 40 位的数值是 将指数函数 ex 扩大它的定义域到复数 z=x+yi 时,由 透过这个级数的计算,可得 由此,De Moivre 定理,三角函数的和差角公式等等都可以轻易地导出.譬如说,z1=x1+y1i, z2=x2+y2i, 另方面, 所以, 我们不仅可以证明 e 是无理数,而且它还是个超越数,即它不是任何一个整系数多项式的根,这个结果是 Hermite 在1873年得到的. 甲)差分. 考虑一个离散函数(即数列) R,它在 n 所取的值 u(n) 记成 un,通常我们就把这个函数书成 或 (un).数列
20、u 的差分 还是一个数列,它在 n 所取的值以定义为 以后我们干脆就把 简记为 (例):数列 1, 4, 8, 7, 6, -2, . 的差分数列为 3, 4, -1, -1, -8 . 注:我们说数列是定义在离散点上的函数如果在高中,这样的说法就很恶劣.但在此地,却很恰当,因为这样才跟连续型的函数具有完全平行的类推. 差分算子的性质 (i) 合称线性 (ii) (常数) 差分方程根本定理 (iii) 其中 ,而 (n(k) 叫做排列数列. (iv) 叫做自然等比数列. (iv) 一般的指数数列(几何数列)rn 之差分数列(即导函数)为 rn(r-1) (乙).和分 给一个数列 (un).和分
21、的问题就是要算和 . 怎么算呢 我们有下面重要的结果: 定理1 (差和分根本定理) 如果我们能够找到一个数列 (vn),使得 ,则 和分也具有线性的性质: 甲)微分 给一个函数 f,若牛顿商(或差分商) 的极限 存在,则我们就称此极限值为 f 为点 x0 的导数,记为 f(x0) 或 Df(x),亦即 若 f 在定义区域上每一点导数都存在,则称 f 为可导微函数.我们称 为 f 的导函数,而 叫做微分算子. 微分算子的性质: (i) 合称线性 (ii) (常数) 差分方程根本定理 (iii) Dxn=nxn-1 (iv) Dex=ex (iv) 一般的指数数列 ax 之导函数为 (乙)积分.
22、设 f 为定义在 a,b 上的函数,积分的问题就是要算阴影的面积.我们的办法是对 a,b 作分割: ;其次对每一小段 xi-1,xi 取一个样本点 ;再求近似和 ;最后再取极限 (让每一小段的长度都趋近于 0). 若这个极限值存在,我们就记为 的几何意义就是阴影的面积. (事实上,连续性也差不多是积分存在的必要条件.) 积分算子也具有线性的性质: 定理2 若 f 为一连续函数,则 存在.(事实上,连续性也差不多是积分存在的必要条件.) 定理3 (微积分根本定理) 设 f 为定义在闭区间 a,b 上的连续函数,我们欲求积分 如果我们可以找到另一个函数 g,使得 g=f,则 注:(1)(2)两式虽
23、是类推,但有一点点差异,即和分的上限要很小心! 上面定理1及定理3基本上都表述着差分与和分,微分与积分,是两个互逆的操作,就好像加法与减法,乘法与除法是互逆的操作一样. 我们都知道差分与微分的操作比和分与积分简单多了,而上面定理1及定理3告诉我们,要计算 (un) 的和分及 f 的积分,只要去找另一个 (vn) 及 g 满足 , g=f (这是差分及微分的问题),那么对 vn 及 g 代入上下限就得到答案了.换句话说,我们可以用较简单的差分及微分操作来掌握较难的和分及积分操作,这就是以简御繁的精神.牛顿与莱布尼慈对微积分最大的贡献就在此. 甲)Taylor展开公式 这分别有离散与连续的类推.它
24、是数学中逼近这个重要想法的一个特例.逼近想法的意思是这样的:给一个函数 f,我们要研究 f 的行为,但 f 本身可能很复杂而不易对付,于是我们就想法子去找一个较简单的函数 g,使其跟 f 很靠近,那么我们就用 g 来取代 f.这又是以简御繁的精神表现.由上述我们看出,要使用逼近想法,我们还需要澄清 两个问题:即如何选取简单函数及逼近的尺度. (一) 对于连续世界的情形,Taylor 展式的逼近想法是选取多项函数作为简单函数,并且用局部的切近作为逼近尺度.说得更明白一点,给一个直到到 n 阶都可导微的函数 f,我们要找一个 n 次多项函数 g,使其跟 f 在点 x0 具有 n 阶的切近,即 ,答
25、案就是 此式就叫做 f 在点 x0 的 n 阶 Taylor 展式. g 在 x0 点附近跟 f 很靠近,于是我们就用 g 局部地来取代 f.从而用 g 来求得 f 的一些局部的定性行为.因此 Taylor 展式只是局部的逼近.当f是足够好的一个函数,即是所谓解析的函数时,则 f可展成 Taylor 级数,而且这个 Taylor 级数就等于 f 自身. 值得注意的是,一阶 Taylor 展式的特殊情形,此时 g(x)=f(x0)+f(x0)(x-x0) 的图形正好是一条通过点 (x0,f(x0) 而且切于 f 的图形之直线.因此 f 在点 x0 的一阶 Taylor 展式的意义就是,我们用过点
26、 (x0,f(x0) 的切线局部地来取代原来 f 曲线.这种局部化用平直取代弯曲的精神,是微分学的精义所在. 利用 Taylor 展式,可以帮忙我们做很多事情,比如判别函数的极大值与极小值,求积分的近似值,作函数表(如三角函数表,对数表等),这些都是意料中事.事实上,我们可以用逼近的想法将微积分一以贯之. 复次我们注意到,我们选取多项函数作为逼近的简单函数,理由很简单:在众多初等函数中,如三角函数,指数函数,对数函数,多项函数等,从算术的观点来看,以多项函数最为简单,因为要计算多项函数的值,只牵涉到加减乘除四则运算,其它函数就没有这么简单. 当然,从别的解析观点来看,在某些情形下还另有更有用更
27、重要的简单函数.例如,三角多项式,再配合上某种逼近尺度,我们就得到 Fourier 级数展开,这在应用数学上占有举足轻重的地位.(事实上,Fourier 级数展开是采用最小方差的逼近尺度,这在高等数学中经常出现,而且在统计学中也有应用.) 注:取 x0=0 的特例,此时 Taylor 展式又叫做 Maclaurin 展式.不过只要会做特例的展开,欲求一般的 Taylor 展式,作一下平移(或变数代换)就好了.因此我们大可从头就只对 x=0 点作 Taylor 展式. (二) 对于离散的情形,Taylor 展开就是: 给一个数列 ,我们要找一个 n 次多项式数列 (gt),使得 gt 与 ft
28、在 t=0 点具有 n 阶的差近.所谓在 0 点具有 n 阶差近是指: 答案是 此式就是离散情形的 Maclaurin 公式. 乙)分部积分公式与Abel分部和分公式的类推 (一) 分部积分公式: 设 u(x),v(x) 在 a,b 上连续,则 (二) Abel分部和分公式: 设(un),(v)为两个数列,令 sn=u1+.+un,则 上面两个公式分别是莱布尼慈导微公式 D(uv)=(Du)v+u(Dv),及莱布尼慈差分公式 的结论.注意到,这两个莱布尼慈公式,一个很对称,另一个则不然. (丁)复利与连续复利 (这也分别是离散与连续之间的类推) (一) 复利的问题是这样的:有本金 y0,年利率 r,每年复利一次,要问 n 年后的本利和 yn= 显然这个数列满足差分方程 yn+1=yn(1+r) 根据(丙)之(二)得知 yn=y0(1+r)n 这就是复利的公式. (二) 若考虑每年复利 m 次,则 t 年后的本利和应为 令 ,就得到连续复利的概念,此时本利和为y(t)=y0ert 换句话说,连续复利时,t 时刻的本利和 y(t)=y0ert 就
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1