ImageVerifierCode 换一换
格式:DOCX , 页数:101 ,大小:626.57KB ,
资源ID:25220941      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/25220941.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(机械原理第七版西北工业大学课后习题答案711章.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

机械原理第七版西北工业大学课后习题答案711章.docx

1、机械原理第七版西北工业大学课后习题答案711章第7章课后习题参考答案71等效转动惯量和等效力矩各自的等效条件是什么?72在什么情况下机械才会作周期性速度波动?速度波动有何危害?如何调节?答:当作用在机械上的驱动力(力矩)周期性变化时,机械的速度会周期性波动。机械的速度波动不仅影响机械的工作质量,而且会影响机械的效率和寿命。调节周期性速度波动的方法是在机械中安装一个具有很大转动惯量的飞轮。73飞轮为什么可以调速?能否利用飞轮来调节非周期性速度波动,为什么?答:飞轮可以凋速的原因是飞轮具有很大的转动惯量,因而要使其转速发生变化就需要较大的能量,当机械出现盈功时,飞轮轴的角速度只作微小上升,即可将多

2、余的能量吸收储存起来;而当机械出现亏功时,机械运转速度减慢飞轮又可将其储存的能量释放,以弥补能最的不足,而其角速度只作小幅度的下降。非周期性速度波动的原因是作用在机械上的驱动力(力矩)和阻力(力矩)的变化是非周期性的。当长时问内驱动力(力矩)和阻力(力矩)做功不相等,机械就会越转越快或越转越慢而安装飞轮并不能改变驱动力(力矩)或阻力(力矩)的大小也就不能改变驱动功与阻力功不相等的状况,起不到调速的作用,所以不能利用飞轮来调节非周期陛速度波动。74为什么说在锻压设备等中安装飞轮可以起到节能的作用?解:因为安装飞轮后,飞轮起到一个能量储存器的作用,它可以用动能的形式把能量储存或释放出来。对于锻压机

3、械来说,在一个工作周期中,工作时间很短而峰值载荷很大。安装飞轮后可以利用飞轮在机械非工作时间所储存能量来帮助克服其尖峰载荷,从而可以选用较小功率的原动机来拖动,达到节能的目的,因此可以说安装飞轮能起到节能的作用。75由式JF=Wmax(m2),你能总结出哪些重要结论(希望能作较全面的分析)?答:当Wmax与m一定时,若下降,则JF增加。所以,过分追求机械运转速度的均匀性,将会使飞轮过于笨重。由于JF不可能为无穷大,若Wmax0,则不可能为零,即安装飞轮后机械的速度仍有波动,只是幅度有所减小而已。当Wmax与一定时,JF与m的平方值成反比,故为减小JF,最好将飞轮安装在机械的高速轴上。当然,在实

4、际设计中还必须考虑安装飞轮轴的刚性和结构上的可能性等因素。76造成机械振动的原因主要有哪些?常采用什么措施加以控制?77图示为一机床工作台的传动系统。设已知各齿轮的齿数,齿轮3的分度圆半径r3,各齿轮的转动惯量J1、,J2、,J2、J3,齿轮1直接装在电动机轴上,故J1中包含了电动机转子的转动惯量;工作台和被加工零件的重量之和为G。当取齿轮1为等效构件时,试求该机械系统的等效转动惯量Je。解:根据等效转动惯量的等效原则有1111G122222JJ(JJ)Jve1112223322222g则1Gv22322JJJ(JJ)()J()()e12232g1111zzzGzz121222122JJJ(J

5、J)()J()r()e122332zzzgzz223237-8图示为DC伺服电机驱动的立铣数控工作台,已知工作台及工件的质量为m4=355kg,滚珠丝杠的-3kg.m。,齿轮1、2的转动惯量分别为J1=73210-6kg.m2,J2=768导程d=6mm,转动惯量J3=1.21010-6kg.m2。在选择伺服电机时,伺服电机允许的负载转动惯量必须大于折算到电动机轴上的负载等效转动惯量,试求图示系统折算到电动机轴上的等效转动惯量。解:根据等效转动惯量的等效原则有11112222JJ(JJ)mve111232442222则:1v2242JJJ(JJ)()m()e12342111zz12212JJ(

6、JJ)()ml()12342zz22=73210-6+(768+l200)l10-6(25/45)2+355(610-3)2(25/45)2=5.284l0-3kg.m22,79已知某机械稳定运转时主轴的角速度s=100rads,机械的等效转动惯量Je=0.5kg.m制动器的最大制动力矩Mr=20N.m(制动器与机械主轴直接相连,并取主轴为等效构件)。要求制动时间不超过3s,试检验该制动器是否能满足工作要求。解因此机械系统的等效转动惯量F:及等效力矩Al。均为常数,故可利用力矩形式的机械运动方程式:Me=Jed/dt2其中:Me=-Mr=-20N.m,Je=0.5kg.mdt=Je/(-Mr)

7、d=0.5/(-20)d=-0.025d因此t=-0.025(-s)=0.025s=2.5s由于t=2.5s3s,所以该制动器满足工作要求。7一10设有一由电动机驱动的机械系统,以主轴为等效构件时,作用于其上的等效驱动力矩Med=10000100(N.m),等效阻抗力矩Mer=8000N.m,等效转动惯量Je=8kg.m2,主轴的初始角速度0=100rads。试确定运转过程中角速度与角加速度随时间的变化关系。解由于机械系统的等效转动惯量为常数,等效力矩为速度的函数,故可利用力矩形式的机械运动方程式Me()=Med()-Mer()=Jed/dt即10000-100-8000=8d/dt8dtd1

8、002000(1)对式积分得t8d(1002000)100100(1002000)8100ln(1002000)ln(1001002000)225ln(1002000)ln8000(2)将式(2)改写为一l2.5t=In(100一2000)一ln8000解得=20+80e-12.5t-12.5t上式对t求导得=d/dt=-100e711在图示的刨床机构中,已知空程和工作行程中消耗于克服阻抗力的恒功率分别为P1=367.7w和p2=3677w,曲柄的平均转速n=100rmin,空程曲柄的转角为1=120o。当机构的运转不均匀系数=0.05时,试确定电动机所需的平均功率,并分别计算在以下两种情况中

9、的飞轮转动惯量JF(略去各构件的重量和转动惯量).1)飞轮装在曲柄轴上;2)飞轮装在电动机轴上,电动机的额定转速nn=I440rmin。电动机通过减速器驱动曲柄,为简化计算,减速器的转动惯量忽略不计。解(1)确定电动机的平均功率。作功率循环图如下图所示。根据在一个运动循环内驱动功与阻抗功应相等,可得PT=P1t1+P2t2P=(P1t1+P2t2)/T=(P11+P22)/(1+2)=(367.7/3+36772/3)=2573.9w(2)由图知最大盈亏功为:、Wmax=(P-P1)t1=(P-P1)(601)/(2n)=(2573-3.967.7)60(1/3)(1/100)=441.24N

10、.m1)当飞轮装在曲柄轴上时飞轮的转动惯量为900W900441.24max2J80.473kg.mF2222n1000.052)飞轮装在电机轴上时,飞轮的转动惯量为JF=JF(n/nn)2=80.473(100/1440)2=0.388kg.m27-12某内燃机的曲柄输出力矩M随曲柄转角的变化曲线如图所d示,其运动周期T,曲柄的平均转速nm620r/min。当用该内燃机驱动一阻抗力为常数的机械时,如果要求其运转不均匀系数=0.01。试求1)曲轴最大转速n和相应的曲柄转角位置maxmax;2)装在曲轴上的飞轮转动惯量J(不计其余构件的转动惯量)。F解:(1)确定阻抗力矩,因一个运动循环内驱动功

11、应等于阻抗功所以有MrT=AOABC=200(1/2)(/6+)解得Mr=(1/)200(1/2)(/6+)=l16.67N.m(2)求曲轴最大转速nmax,和相应的曲柄转角位置max:作其系统的能量指示图(见图(b)由图可知在c处机构出现能量最大值即=c时,n=nmax。故max=20o+30o+130o(200-116.7)/200=104.16o此时nmax=(1+/2)nm=(1+0.01/2)620=623.1r/min(3)求装在曲轴上的飞轮转动惯量J,:WAmaxbABc200116.6720200116.67130200116.67(67.26N.m26180200180200

12、故:900W90067.262maxJ1.596kg.mF2222n6200.01713图示为两同轴线的轴1和2以摩擦离合器相连。轴1和飞轮的总质量为100kg,回转半径=450mm;轴2和转子的总质量为250kg,回转半径=625mm。在离合器接合前,轴1的转速为n,=100rmin,而轴2以n:=20groin的转速与轴1同向转动。在离合器接合后3s,两轴即达到相同的速度。设在离合器接合过程中,无外加驱动力矩和阻抗力矩。试求:1)两轴接合后的公共角速度;2)在离合器结合过程中,离合器所传递的转矩的大小。解设离合器结合过程中所传递的摩擦力矩为Mf两轴结合后的公共角速度为。根锯力矩形式的机械运

13、动方程。对于轴l和轴2,分别有:0d1MJJf11dt3(1)d22M0JJf22dt3(2)JJ1122JJ由式(1)(2)得:122J2=m222式中J1=m111=2n1/60=n1/30,2=2n2/60=n2/30从而2222mnmn1000.451000.62520111222222230mm301000.451000.62511223.533rad/s由(1)得:22mn1000.451001111MJ()(3.533)46.838N.mf13330330714图示为一转盘驱动装置。1为电动机,额定功率为Pn=0.55kW,额定转速为nn=1390rmin,转动惯量J1=0.01

14、8kg.m2;2为减速器,其减速比i2=35,3、4为齿轮传动,z3=20,z4=52;减速器和齿轮传动折算到电动机轴上的等效转动惯量J2e=0.015kg.rn2;转盘5的转动惯量J5=144kg.m,作用在转盘上的阻力矩为Mr5=80N.m;传动装置及电动机折算到电动机轴上的阻力矩为Mr1=0.3N.m。该装置欲采用点动(每次通电时间约0.15s)作步进调整,问每次点动转盘5约转过多少度?提示:电动机额定转矩Mn=9550Pnnn,电动机的起动转矩Md2Mn,并近似当作常数。解取电机轴作为等效构件,则系统的等效转动惯量为2012225JJJJ()0.0180.015144()0.0504k

15、g.me112e552351点动过程中,系统的运行分为两个阶段:第一阶段为通电启动阶段,第二阶段为断电停车阶段。第一阶段的等效力矩为Pz15n3MMMM()29550MM()e11dr1r5r1r5nzi1n423.534201295500.380()6.378N.m13905235由于在此阶段系统的等效力矩和等效转动惯量均为常数,所以在此阶段电机轴的角速度和转过的角度为11=10+1t1211=10+10t1+(1/2)1t1式中:10=0,10=0,t1=0.15,a1=Me11/Je1所以M6.378e11t0.1518.982rad/s111J0.0504e11M6.378e1122t

16、0.50.151.424rad1112J0.0504e1第二阶段的等效力矩为z120153MMM()MM()0.380()1.179N.me12r1r5r1r5zi5235142由于在此阶段系统的等效力矩和等效转动惯量均为常数,所以在此阶段电机轴的角速度和转过的角度为:12=11+2t2212=11+11t2+(1/2)2t2式中:12=0,2=Me12/Je1所以J18.9820.05041111e1t0.811s2M1.1792e21M1.179e1222tt1.142418.9820.8110.50.8119.125rad121111222J0.0504e1每次点动后电机转过的角度为1=

17、12+11=1.424+9.125=10.549rad而转盘5转过的角度为:z1180201803()10.5496383151zi523542第8章课后习题参考答案8-l铰链四杆机构中,转动副成为周转副的条件是什么?在下图所示四杆机构ABCD中哪些运动副为周转副?当其杆AB与AD重合时,该机构在运动上有何特点?并用作图法求出杆3上E点的连杆曲线。答:转动副成为周转副的条件是:(1)最短杆与最长杆的长度之和小于或等于其他两杆长度之和;(2)机构中最短杆上的两个转动副均为周转副。图示ABCD四杆机构中C、D为周转副。当其杆AB与AD重合时,杆BE与CD也重合因此机构处于死点位置。8-2曲柄摇杆机

18、构中,当以曲柄为原动件时,机构是否一定存在急回运动,且一定无死点?为什么?答:机构不一定存在急回运动,但一定无死点,因为:(1)当极位夹角等于零时,就不存在急回运动如图所示,(2)原动件能做连续回转运动,所以一定无死点。8-3四杆机构中的极位和死点有何异同?8-4图a为偏心轮式容积泵;图b为由四个四杆机构组成的转动翼板式容积泵。试绘出两种泵的机构运动简图,并说明它们为何种四杆机构,为什么?解机构运动简图如右图所示,ABCD是双曲柄机构。因为主动圆盘AB绕固定轴A作整周转动,而各翼板CD绕固定轴D转动,所以A、D为周转副,杆AB、CD都是曲柄。8-5试画出图示两种机构的机构运动简图,并说明它们各

19、为何种机构。图a曲柄摇杆机构图b为导杆机构。8-6如图所示,设己知四杆机构各构件的长度为a240mm,b600mm,c400mm,d500mm。试问:1)当取杆4为机架时,是否有曲柄存在?2)若各杆长度不变,能否以选不同杆为机架的办法获得双曲柄机构和双摇杆机构?如何获得?3)若a、bc三杆的长度不变,取杆4为机架,要获得曲柄摇杆机构,d的取值范围为何值?:解(1)因a+b=240+600=840900=400+500=c+d且最短杆1为连架轩故当取杆4为机架时,有曲柄存在。(2)、能。要使此此机构成为双曲柄机构,则应取1杆为机架;两使此机构成为双摇杆机构,则应取杆3为机架。(3)要获得曲柄摇杆

20、机构,d的取值范围应为440760mm。8-7图示为一偏置曲柄滑块机构,试求杆AB为曲柄的条件。若偏距e=0,则杆AB为曲柄的条件是什么?解(1)如果杆AB能通过其垂直于滑块导路的两位置时,则转动副A为周转副,故杆AB为曲柄的条件是AB+eBC。(2)若偏距e=0,则杆AB为曲柄的条件是ABBC8-8在图所示的铰链四杆机构中,各杆的长度为求:l28mm,1l52mm,2l50mm,3l72mm,试41)当取杆4为机架时,该机构的极位夹角、杆3的最大摆角、最小传动角min和行程速比系数K;2)当取杆1为机架时,将演化成何种类型的机构?为什么?并说明这时C、D两个转动副是周转副还是摆转副;3)当取

21、杆3为机架时,又将演化成何种机构?这时A、B两个转动副是否仍为周转副?解(1)怍出机构的两个极位,如图,并由图中量得:=18.6o,=70.6o,min=22.7ok18018018.612.318018018.6(2)由l1+l4l2+l3可知图示铰链四杆机构各杆长度符合杆长条件;小最短杆l为机架时,该机构将演化成双曲柄机构;最短杆1参与构成的转动副A、B都是周转副而C、D为摆转副;(3)当取杆3为机架时,最短杆变为连杆,又将演化成双摇杆机构,此时A、B仍为周转副。8-9在图示的连杆机构中,已知各构件的尺寸为l160mm,lBC260mm,ABlmml80mm,构件AB为原动件,沿顺时针方向

22、匀速回转,试确定:200,CDAD1)四杆机构ABCD的类型;2)该四杆机构的最小传动角min;3)滑块F的行程速比系数K。解(1)由lAD+lBClAB+lCD且最短杆AD为机架可知,图中四杆ABCD为双曲柄机构;(2)作出四杆机构ABCD传动角最小时的位置。见图并量得min=12o(3)作出滑块F的上、下两个极位及原动件AB与之对应的两个极位,并量得=47o。求出滑块F的行程速比系数为k18018047180180471.718-10试说明对心曲柄滑块机构当以曲柄为主动件时,其传动角在何处最大?何处最小?解在曲柄与导轨共线的两位置之一传动角最大,max=90o;在曲柄与机架共线的两位置之一

23、传动角最小,min=arcos(LAB/lBC)。8-11正弦机构(图8一15b)和导杆机构(图822a)中,当以曲柄为主动件时,最小传动角min为多少?传动角按什么规律变化?解min=90o;传动角恒定不变。8-12图示为偏置导杆机构,试作出其在图示位置时的传动角以及机构的最小传动角及其出现的位置,并确定机构为回转导杆机构的条件。解传动角以及机构最小传动角及其出现的位置如下图所示。机构为回转导杆机构的条件:ABAC8-13如图857所示,当按给定的行程速度变化系数K设计曲柄摇杆机构时,试证明若将固定铰链A的中心取在FG弧段上将不满足运动连续性要求。答因这时机构的两极位DC1,DC2将分别在两

24、个不连通的可行域内。8-14图示为一实验用小电炉的炉门装置,关闭时为位置E1,开启时为位置E2。试设计一个四杆机构来操作炉门的启闭(各有关尺寸见图)。(开启时,炉门应向外开启,炉门与炉体不得发生干涉。而关闭时,炉门应有一个自动压向炉体的趋势(图中S为炉门质心位置)。B、C为两活动铰链所在位置。解(1)作出B2C2的位置;用作图法求出A及D的位置,并作出机构在E2位置的运动简图,见下图,并从图中量得lAB=l.AB=95mmlAD=l.AD=335mmlCD=l.CD=290mm(2)用怍图法在炉门上求得B及C点位置,并作出机构在位置的运动图(保留作图线)。作图时将位置E1转至位置E2,见图并量

25、得lAB=l.AB=92.5mmlBC=lBC=l27.5rnmlCD=l.CD=262.5mn8-15图示为公共汽车车门启闭机构。已知车门上铰链C沿水平直线移动,铰链B绕固定铰链A转动,车门关闭位置与开启位置夹角为a=115o,AB1/C1C2,lBC=400mm,1C1C2=550mm,试求构件AB的长度,验算最小传动角,并绘出在运动中车门所占据的空间(作为公共汽车的车门,要求其在启闭中所占据的空间越小越好。8-16图示为一已知的曲柄摇杆机构,现要求用一连杆将摇杆CD和滑块F联接起来,使摇杆的三个已知位置C1D、CD、2CD和滑块的三个位置3F、1F、2F相对应(图示尺寸系按比例绘出)。试

26、确3定此连杆的长度及其与摇杆CD铰接点的位置。解由题意知,本题实际是为按两连架汗(摇杆与滑块)的预定对应位置设计四扦机构的同题。具体作图过程如下图所示。连杆的长度为lEF=lE2F2=l30mm。8-17图示为某仪表中采用的摇杆滑块机构,若已知滑块和摇杆的对应位置为S1=36mm,S12=8mm,S23=9mm;12=25o,23=35o,摇杆的第位置在铅垂方向上。滑块上铰链点取在B点,偏距e=28mm,试确定曲柄和连杆长度。解本题属于按两连架轩预定的对应位置设计四杆机构问题。此问题可用反转法求解。曲柄长度3.535mm,连杆长度52.2mm见图中标注。8-18试设计图示的六杆机构。该机构当原

27、动件l自y轴顺时针转过12=60o时,构件3顺时针转过=45o恰与x轴重合。此时,滑块6自E1点移动到E2点,位移s12=20mm。试确定铰链B及C的位置。解由题意知,所要设计的六杆机构ABCDEF是由铰链四杆机构ABCD和摇杆滑块机构CDE串联所组成,故此设计问题,可分解为两个四杆机构的设计问题。对于摇杆滑块机构CDE的设计,就是确定活动铰链C的位置,可用反转法设汁,具体作法如下图所示。对于铰链四扦机构ABCD的设计就是确定活动铰链B的位置,也可用反转法设计,具体作法如下图所示。8-19现欲设计一四杆机构翻书器。如图所示,当踩动脚踏板时,连杆上的肘点自M,移至M:就可翻过一页书。现已知固定铰

28、链A、D的位置,连架杆AB的长度及三个位置以及描点M的三个位置。试设计该四杆机构(压重用以保证每次翻书时只翻过一页)解:作图,并量得:AB=36mm,AD=47mm,CD=5mm,BC=10mm,BM=36mm,CM=44mm8-20现需设计一铰链四杆机构,用以启闭汽车前灯的遮避窗门。图示为该门(即连杆上的标线)在运动过程中的五个位置,其参数如表83所示。试用解析法设计该四杆机构(其位置必须限定在图示长方形的有效空间内)。8-21图示为一用推拉缆操作的长杆夹持器,用一四杆机构ABCD来实现夹持动作。设已知两连架杆上标线的对应角度如图所示,试确定该四杆机构各杆的长度。解:取AD为机架,并以适当比例尺作机架AD及AB杆与DE杆的三对对应位置。此机构设计简要步骤如图(保留作图线),机构各杆长度为:8-22图示为一汽车引擎油门控制装置。此装置由四杆机构ABCD、平行四边形机构DEFG及油门装置所组成,由绕O轴转动的油门踏板OI驱动可实现油门踏板与油门的协调配合动作。当油门踏板的转角分别为0o、5o、15o及20o时,杆MAB相对应的转角分别为0o、32o、52o及63o(逆时针方向),与之相应油门开启程度为0o(关闭)、14o、44o及60o(全开)四个状态。现设lAD=120mm,试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1