ImageVerifierCode 换一换
格式:DOC , 页数:45 ,大小:1.83MB ,
资源ID:250555      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/250555.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(异步机转差频率控制的变压变频调速系统的设计.doc)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

异步机转差频率控制的变压变频调速系统的设计.doc

1、目录摘要I1.全文概述11.1转差频率控制的基本概念11.2基于异步电动机稳态模型控制的转差频率控制规律21.3基于异步电动机动态态模型控制的转差频率矢量控制规律52.异步电动机转差频率间接矢量控制交流调速系统72.1异步电机的特点72.2三相异步电动机的多变量非线性数学模型72.2.1电压方程92.2.2磁链方程92.2.3转矩方程112.2.4电力拖动系统运动方程122.3矢量控制技术思想142.3.1坐标变换151)坐标变换的基本思想和原则152)三相-两相变换(3s/2s变换)172.3.2交流异步电机在两相任意旋转坐标系上的数学模型212.3.3异步电机在两相静止坐标系(坐标系)上的

2、数学模型232.3.4异步电机在两相同步旋转系上的数学模型232.3.5三相异步电动机在两相坐标系上的状态方程242.4基于转差频率矢量控制调速系统的组成262.4.1基于转差频率间接矢量控制调速系统的工作原理262.4.2异步电动机转差频率间接矢量控制公式推导273.主电路与控制电路283.1 SPWM逆变电路293.2控制电路的设计303.2.1转速PI调节器的设计303.2.2函数运算模块的设计324转差频率间接矢量控制的matlab仿真344.1仿真模型的搭建及参数设置344.1.1主电路模型354.1.2控制电路的模型搭建364.2仿真结果与分析384.2.1仿真波形图384.2.2

3、仿真结果分析405.心得体会416.参考文献42摘要本文基于 MATLAB 对异步电动机转差频率控制调速系统进行仿真研究。首先分析了异步电动机转差频率控制技术的主要控制方法、基本组成与工作原理。之后对异步电机的动态模型做了分析,进一步介绍了异步电机的坐标变换,对异步电机转差频率矢量控制系统的基本原理进行了阐述,通过仿真工作,证明了其可行性。最后,通过对仿真结果进行分析,归纳出如下结论:单纯的转差频率控制带载能力差,应用转差频率矢量控制可增强电机对转矩的调节能力且无需电压补偿。关键词:转差频率,矢量控制,异步电动机武汉理工大学电力拖动与控制系统课程设计任务书异步机转差频率控制的变压变频调速系统的

4、设计1.全文概述1.1转差频率控制的基本概念本文主要介绍异步电动机的转差频率控制方式,在该基础上进一步介绍转差频率间接矢量控制方式。由电力拖动的基本方程式: (1-1) 根据基本运动方程式,控制电磁转矩就能控制。因此,归根结底,控制调速系统的动态性能就是控制转矩的能力。图1.1异步电动机稳态等效电路和感应电动势电磁转矩关系式: (1-2) 由图1.1异步电动机稳态等效电路图可知: (1-3) 将(1-3)代入(1-2)中得: (1-4) 将电机气隙电动势 代入式(1-4)得 (1-5) 令并定义为转差频率,其中为电机的结构常数,则式(1-5)可化为 (1-6) 当电机稳定运行时,值很小,可以认

5、为,则转矩可近似表示为 (1-7) 上式表明,在很小的稳定运行范围内,如果能够保持气隙磁通不变,则有,从而控制了转差频率就相当于控制了转矩。 1.2基于异步电动机稳态模型控制的转差频率控制规律当较大时,采用式(1-4)的精确转矩公式,其转矩特性如图1.2所示,当较小时处于稳定运行段,转矩与转差频率成正比,当达到最大值时,达到。图1.2 按恒值控制的特性对于式(1-4),取,可得, (1-8) (1-9)1)在转差频率控制系统中,只要给定限幅,使其限幅值为 (1-10)则可保持与的正比关系,从而可以用转差频率控制来代替转矩控制。2)保持恒定的条件:由异步电机等效电路图1.1,可知 (1-11)

6、可见该控制需要在实现恒控制的基础上再提高电压以补偿定子电压降。如果忽略电流相量相位变化的影响,不同定子电流时恒控制所需的电压-频率特性 如图1.3所示。图1.3 不同定子电流时恒压频比控制所需的电压-频率特性上述关系表明,只要和及的关系符合上图所示特性,就能保持恒定,也就是保持恒定。这是转差频率控制的基本规律之二。 总结起来,转差频率控制的规律是:(1)在的范围内,转矩基本上与成正比,条件是气隙磁通不变。(2)在不同的定子电流值时,按上图的函数关系控制定子电压和频率,就能保持气隙磁通恒定。由以上工作情况可以看出,转差频率控制系统的突出优点在于频率控制环节的输入是转差信号,而频率信号是由转差信号

7、与实际转速信号相加得到的。这样,在转速变化过程中,定子频率随着实际转速同步上升或下降。与转速开环系统中按电压成正比地直接产生频率给定信号相比,加、减速更为平滑,且容易使系统稳定。稳态工作时可以实现无差调节,在急剧的动态过程中,可维持电机转矩接近于最大值。在一定程度上类似于直流双闭环系统,因此属于高性能的控制系统。本文所设计的变频调速系统即采用转差频率控制方式。1.3基于异步电动机动态态模型控制的转差频率矢量控制规律异步电动机的转差频率矢量控制是在传统的直接利用转差频率的基础上,异步电动机的动态数学模型是一个高阶,非线性,强耦合的多变量系统。如果将异步电动机的物理模型等效成类似的直流电动机模型,

8、分析和控制就可以大大简化了。所以需要对异步电动机进行坐标变换。因此,在三相坐标系上的定子电流通过三相两相变换可以等效成两相静止坐标系上的交流电流,在通过同步下旋转变化,可以等效成同步旋转坐标系上的直流电 如果观察者站到铁心上与坐标系一起旋转,通过控制,可使交流电动机的转子总磁通就是等效直流电动机的励磁磁通,如果把轴定位于的方向上,称做M轴,把轴称做T轴,则M绕组相当于直流电动机的励磁绕组, 相当于励磁电流,T绕组相当于伪静止的电枢绕组,相当于与转矩成正比的电枢电流。把上述等效关系用结构图的形式画出来,如下图所示。从整体上看,输入为A,B,C三相电压,输出为转速,是一台异步电动机。从内部看,经过

9、3/2变换和同步旋转变换,变成一台由和输入由输出的直流电动机。图1.4异步电动机的坐标变换图既然异步电动机经过坐标变换可以等效成直流电动机,那么,模仿直流电动机的控制策略,得到直流电动机的控制量,经过相应的坐标反变换,就能够控制异步电动机了,由于进行坐标变换的是电流的空间矢量,所以这样通过坐标变换实现的控制系统就叫做矢量控制系统,简称VC系统。VC系统的原理结构如上图所示;图中给定和反馈信号经过类似于直流调速系统所用的控制器,产生励磁电流的给定信号和电枢电流的给定信号,经过反旋转变换得到,再经过2/3变换得到 把这三个电流控制信号和由控制器得到的频率信号相加到电流控制的变频器上,即可输出异步电

10、动机调速所需的三相变频电流。而在磁链闭环控制的VC系统中,转子磁链反馈信号是由磁链模型获得的,其幅值和相位都受到电机参数变化的影响,造成控制的不准确性,既然这样,与其采用磁链闭环控制而反馈不准,不如采用磁链开环控制,系统反而会简单一些。在这种情况下,可利用矢量控制方程中的转差公式,构成转差型的矢量控制系统,又称间接矢量控制系统。2.异步电动机转差频率间接矢量控制交流调速系统2.1异步电机的特点异步电动机转差频率控制的转速闭环变压变频调速系统的控制思想建立在异步电动机的静态数学模型上,动态性能指标不高。我们常常会联想到直流电机的调速系统,由于直流电机在额定励磁下是一个二阶线性系统,传递函数明确,

11、从而系统的优化会变得简单,PI调节器的参数的设置也轻而易举。而相对于直流电机,交流电机具有以下特点:1异步电动机变压变频调速时需要进行电压电流的协调控制,有电压和电流两个独立的输入变量。在输出变量中,除转速外,磁通也得算一个独立的输出变量。因为电动机只有一个三相输入电源,磁通的建立和转速的变化是同时进行的,为了获得良好的动态性能,也希望对磁通施加某种控制,使它在动态过程中尽量保持恒定,才能产生较大的动态转矩。由于这些原因,异步电动机是一个多变量系统,而电压,电流,频率,磁通,转速之间又互相都有影响,所以是一个强耦合的多变量系统,可以用图2.1定性的表示。2在异步电动机中,电流乘磁通产生转矩,转

12、速乘磁通得到感应电动势,由于它们都是同时变化的,在数学模型中,就含有两个变量的乘积项,这样一来,即使不考虑磁饱和等因素,数学模型也是非线性的。3三相异步电动机有三个定子绕组,转子也可等效为三个绕组,每个绕组产生磁通时都有自己的电磁惯性,再算上运动系统的机电惯性和转速与转角的积分关系,即使不考虑变频装置的滞后因素,也是一个八阶系统。鉴于异步电动机的以上特点,我们有必要研究一下异步电机的动态数学模型。2.2三相异步电动机的多变量非线性数学模型无论电动机是绕线型还是笼型的,都可以将它等效成三相绕线转子,并折算到定子侧,折算后的定子和转子绕组匝数都相等。在做出以下假设:(1)忽略空间谐波,三相绕组在空

13、间互差120,所产生的磁动势沿气隙周围按正弦规律分布;(2)忽略磁路饱和,认为各绕组的自感和互感都是恒定的;(3)忽略铁心损耗;(4)不考虑频率变化和温度变化对绕组电阻的影响。此时电动机绕组就等效成图2.2所示的三相异步电动机的物理模型。图中,定子三相绕组轴线A,B,C在空间是固定的,以A轴为参考坐标轴;转子绕组轴线a,b,c随转子旋转,转子a轴和定子A轴间的电角度为空间角位移变量。规定各绕组电压,电流,磁链的的正方向符合电动机惯性和右手螺旋定则,这时,异步电动机的数学模型由下述电压方程,磁链方程,转矩方程和运动方程组成。图2.1异步电动机的多变量强耦合模型结构图2.2三相异步电动机物理模型2.2.1电压方程1)三相定子绕组的电压平衡方程组 2)三相转子绕组折算到定子侧的电压方程 式中, 定子和转子相电压的瞬时值; , , , 定子和转子相电流的瞬时值;将电压方程写成矩阵形式,并以微分算子代替微分符号 (2-1)即 2.2.2磁链方程每个绕组的磁链是

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1