ImageVerifierCode 换一换
格式:DOCX , 页数:17 ,大小:110.17KB ,
资源ID:24874677      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/24874677.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高中数学 13《实习作业》教案 新人教A版必修5.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

高中数学 13《实习作业》教案 新人教A版必修5.docx

1、高中数学 13实习作业教案 新人教A版必修52019-2020年高中数学 1.3实习作业教案 新人教A版必修5教学目的:1进一步熟悉解斜三角形知识; 2巩固所学知识,提高分析和解决简单实际问题的能力; 3加强动手操作的能力; 4进一步提高用数学语言表达实习过程和实习结果的能力; 5增强数学应用意识 教学重点:数学模型的建立教学难点:解斜三角形知识在实际中的应用授课类型:新授课课时安排:2课时教 具:多媒体、实物投影仪教学方法 : 分组讨论式 关于实习作业的教学,受到实验条件的影响,比如学校实验室暂缺测角仪、经纬仪等测量仪器,但考虑到实习作业将体现数学知识在实际中的应用,意义重大所以没有放弃,而

2、是在课堂上简要讲述测角仪的原理后,向学生提出:能否自己动手,制作一个简易测角仪,并在实习中加以运用 通过分组讨论,比较得出较为优秀的方案供全体同学参考,同时还能激发起学生的参与意识,提高动手能力,进一步增强学习数学的兴趣 教学过程:一、引入:前面几节课,学习了解斜三角形的应用举例,具备了一定的解斜三角形的能力,并且了解到解斜三角形知识在生产、生活实际的各个方面的应用这一节,我们将为应用解斜三角形知识的实习作业作准备工作 二、讲解新课:1测角仪原理 如图,对于建筑物AB,需测出角,其中D为测角仪所处位置,在建筑物与地面垂直前提下,DC与地面平行DA为测角仪与建筑物顶端连线2提出问题 (1)DC的

3、水平如何保持? (2)角如何获得? 根据上述原理及所提问题,大家进行分组讨论,十五分钟后各组选一代表表述本组方案3简易测角仪方案方案 (1)实验器材:木板一块、量角器一个、三角架1个,硬纸条(3Oc),铅垂线 (2)如图所示 木板 硬纸条 支架 铅垂线 量角器 转动点 其中硬纸条、量角器固定在木板上,但可绕转动点转动,木板固定在支架上,使铅垂线与矩形木板中心线重合以保持木板的水平 (3)测量时,使B、C和建筑物顶端重合,即三点一线,由于量角器随其移动,所以A点所示度数即所侧仰角的度数(4)注意事项 尽量加长BC以减少误差,水平调整尤为重要, 测量多次数据取平均值, 测量时所选地面应保持水平 (

4、5)不足之处 测量角度只能精确到1 方案 (1)实验器材:两个凳子、圆规、重垂线、三角板、卷尺(2)示意图: (3)测量步骤 圆规一边OB固定在板凳边缘, 在圆规另一边OA末端A点挂上重垂线, 用三角板验证重垂线与OB是否垂直,若不垂直,可提升或降低O点,使它们垂直, 用卷尺量出OB、AB长度,其中OA要与建筑物顶端共线,tan,arctan(其中反三角函数意义可不要求学生掌握)(4)注意事项 圆规可用三合板,薄金属片之类材料做成,以减少测量误差, 在板凳上采取固定设施,可用钉子钉在板凳上,以防止测量时圆规的错位移动,尽量使视线与O、A及所测建筑物的顶端位于同一直线上, 运算结果利用计算器得出

5、 4研究问题 (1)测量底部能到达的建筑物高度 测出角、DC长度,BC长度,在RtADC中,求出AC,则ACBC即为所求(2)测量底部不能到达的建筑物高度选点C、D两次测得仰角1,2,测出CD长度、BE长度 在ACD中,利用正弦定理求出AD,而后在RtADE中,求出AE,则AEBE即为所求 5实习作业注意事项 (1)准备所需工具; (2)提前设计实习报告; (3)减少误差的措施; (4)提前勘察地形以确定研究类型 三、实习作业举例 1根据地形选取测量点; 2测量所需数据; 3多次重复测量,但改变测量点; 4填写实习报告; 5总结改进方案 附:实习报告 年 月 日 题目测量底部不能到达的烟囱AB

6、的高度测量目标测得数据测量项目第一次第二次平均值EF长(m)ED长(m)12计算减少误差措施负责人及参加人计算者及复核者指导教师审核意见备注例题 A、B两点间有小山和小河,为了求A、B两点间的距离,选择一点D,使AD可以直接测量且B、D两点可以通视,再在AD上选一点C,使B、C两点也可通视,测量下列数据: AC,CD,ADB,ACB,求AB(1)计算方法 如图所示,在BCD中,CD,CDB DBC由正弦定理可得BC在ABC中,再由余弦定理得 AB2BC2AC22BCACcosACB其中BC可求,AC,ACB,故AB可求 (2)实习报告 题 目测量不可达到的两点A、B间距离测量目标测得数据测量项

7、目第一次第二次平均值AC长CD长计算DBCAB2BC2AC22BCACcosACB参加人负责人计算人指导教师计算复核人备注三、课堂练习:1从A处望B处的仰角为,从B处望A处的俯角为,则、的关系为( )A B= C+=90 D+=1802海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60的视角,从B岛望C岛和A岛成75的视角,则B、C间的距离是A10海里 B海里 C5海里 D5海里3在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30、60,则塔高为( )A米 B米 C200米 D200米4一树干被台风吹断折成与地面成30角,树干底部与树尖着地处相距20米,则树干原来的高度为 5甲

8、、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60,从甲楼顶望乙楼顶的俯角为30,则甲、乙两楼的高分别是 6某舰艇在A处测得遇险渔船在北偏东45距离为10海里的C处,此时得知,该渔船沿北偏东105方向,以每小时9海里的速度向一小岛靠近,舰艇时速21海里,则舰艇到达渔船的最短时间是 参考答案:1B 2D 3A 420米520米,米 6小时四、归纳小结,提高认识(学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结) 通过本节学习,大家要明确测角仪的原理,熟悉简易测角仪的制作程序及测量角度的基本步骤,以及实际问题的数学模型的解决方法,提高大家应用数学知识解决实际问题的

9、能力五、课后作业:(1)提前勘察地形;(2)准备测量工具;(3)设计实习报告六、板书设计(略) 必修5第一章实习作业(三角测量)教学设计说明一、教学内容的分析三角测量是学生在学习过解三角形方法后学习的一个与实际生活有关的应用,是三角函数教学中一个重要的实际应用,通过解三角形的应用的学习,提高解决实际问题的能力;通过解斜三角形在实际中的应用,要求学生体会具体问题可以转化为抽象的数学问题,以及数学知识在生产、生活实际中所发挥的重要作用. 教学重点:对于本节课的内容,学生的认知困难主要在两个方面:(1)要求准确观察较复杂的图形,从中找到解决问题的关键条件,这对读图能力有待提高的高一的学生是比较困难的

10、;(2)灵活运用正弦定理和余弦定理解关于角度的问题,而学生在这方面的灵活应用能力是比较薄弱的根据以上的分析和教学大纲的要求,确定了本节课的重点和难点二、教学目标的确定根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用;会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法,搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系,理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等,通过解三角

11、形的应用的学习,提高解决实际问题的能力;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成 三、教学方法和教学手段的选择本节课是函数单调性的起始课,采用教师启发讲授,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法本节课使用了多媒体投影和计算机来辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识四、教学过程的设计为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施: (1)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对解三角形的应用的实际认识,使得学

12、生对该内容的认识不断深入(2)在应用概念阶段, 通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤(3)考虑到我校学生数学基础比较薄弱较好、思维欠缺活跃的特点,对判断方法进行适当的调整,加深对定义的理解,同时也为以后的学习下伏笔五、教学反思本节课授课对象为我校理科班的学生,学习基础相对较好。同时,考虑到这是一节探究课,授课前并没有告诉学生授课内容。学生在未经预习不知正弦定理内容和证明方法的前提下,在教师预设的思路中,一步步发现了解斜角三角形的实际应用,感受到了创造的快乐,激发了学习数学的兴趣。(一)、通过创设教学情境,激活了学生思维。从认知的角度看,情境可视为一种信息载体,一种

13、知识产生的背景。本节课数学情境的创设突出了以下两点:1从有利于学生主动探索设计数学情境。新课标指出:学生的数学学习内容应当是现实的、有趣的和富有挑战性的。从心理学的角度看,青少年有一种好奇的心态、探究的心理。因此,本教案紧紧地抓住高一学生的这一特征,利用“怎样测量角度”这一富有挑战性和探索性的材料,精心设计教学情境,使学生在观察、实验、猜想、验证、推理等活动中,逐步形成创新意识。2.以问题为导向设计教学情境。“问题是数学的心脏”,本节课数学情境的设计处处以问题为导向: “怎样调整测量角度的方法呢?”、“我们的工作该怎样进行呢?”、“我们的根据地是什么?”、“对任意角的测量都成立吗?”促使学生去

14、思考问题,去发现问题。(二)、创造性地使用了教材。数学教学的核心是学生的“再创造”,新课标提倡教师创造性地使用教材。本节课从问题情境的创造到数学实验的操作,再到证明方法的发现,都对教材作了一定的调整和拓展,使其更符合学生的思维习惯和认知水平,使学生在知识的形成过程、发展过程中展开思维,发展了学生的能力。(三)数学实验走进了课堂,这一朴实无华而又意义重大的科学研究的思路和方法给了学生成功的快乐;这一思维模式的养成也为学生的终身发展提供了有利的武器。一些遗憾:由于这种探究课型在平时的教学中还不够深入,有些学生往往以一种观赏者的身份参与其中,主动探究意识不强,思维水平没有达到足够的提升。但相信随着课

15、改实验的深入,这种状况会逐步改善。同时,课堂评价更多关注与个人评价,而忽略了小组合作讲评价,评价方式也不够多样。这些不足还有待于我在以后的教学中摸索并改进。一些感悟:轻松愉快的课堂是学生思维发展的天地,是合作交流、探索创新的主阵地,是思想教育的好场所。新课标下的课堂是学生和教师共同成长的舞台!2019-2020年高中数学 1.3空间几何体的表面积与体积教案 新人教必修2一、教学目标1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。(3)培养学生空间想象能力和思维能力。2、过程与

16、方法(1)让学生经历几何全的侧面展一过程,感知几何体的形状。(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系。3、情感与价值通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响。从而增强学习的积极性。二、教学重点、难点重点:柱体、锥体、台体的表面积和体积计算难点:台体体积公式的推导三、学法与教学用具1、学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标。2、教学用具:实物几何体,投影仪四、教学设想1、创设情境(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求

17、法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类。(2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容。2、探究新知(1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图(2)组织学生分组讨论:这三个图形的表面由哪些平面图形构成?表面积如何求?(3)教师对学生讨论归纳的结果进行点评。3、质疑答辩、排难解惑、发展思维(1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:r1为上底半径 r为下底半径 l为母线长(2)组织学生思考圆台的表面积公式与圆柱及圆锥表面

18、积公式之间的变化关系。 (3)教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥?由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解。如图:(4)教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系。(s,s分别我上下底面面积,h为台柱高)4、例题分析讲解(课本)例1、 例2、 例35、巩固深化、反馈矫正教师投影练习1、已知圆锥的表面积为 a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为 。 (答案:)2、棱台的两个底面面积分别是245c和80,截得这个棱台的棱锥的高为35cm,求这个棱台的体积。 (答案:2325cm3)6、课堂小结本节课学习了柱体、锥体与台体的

19、表面积和体积的结构和求解方法及公式。用联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握。7、评价设计习题1.3 A组1.31.3.2 球的体积和表面积一. 教学目标1 知识与技能通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分割求和化为准确和”,有利于同学们进一步学习微积分和近代数学知识。能运用球的面积和体积公式灵活解决实际问题。培养学生的空间思维能力和空间想象能力。2 过程与方法通过球的体积和面积公式的推导,从而得到一种推导球体积公式R3和面积公式R2的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想3 情感与价值观

20、通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心。二. 教学重点、难点重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。难点:推导体积和面积公式中空间想象能力的形成。三. 学法和教学用具1 学法:学生通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值的、再由近似值的和转化为球的体积和面积”的解题方法和步骤。2 教学用具:投影仪四. 教学设计(一) 创设情景教师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?引导学生进行思考。教师设疑:球

21、的大小是与球的半径有关,如何用球半径来表示球的体积和面积?激发学生推导球的体积和面积公式。(二) 探究新知球的体积:如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之和正好是球的体积,由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积可以按“分割求和化为准确和”的方法来进行。步骤:第一步:分割如图:把半球的垂直于底面的半径作n等分,过这些等分点,用一组平行于底面的平面把半球切割成n个“小圆片”,“小圆片”厚度近似为,底面是“小圆片”的底面。如图:得第二步:求和第三步:化为准确的和当n时, 0

22、 (同学们讨论得出)所以 得到定理:半径是的球的体积练习:一种空心钢球的质量是142g,外径是5cm,求它的内径(钢的密度是7.9g/cm3)球的表面积:球的表面积是球的表面大小的度量,它也是球半径R的函数,由于球面是不可展的曲面,所以不能像推导圆柱、圆锥的表面积公式那样推导球的表面积公式,所以仍然用“分割、求近似和,再由近似和转化为准确和”方法推导。思考:推导过程是以什么量作为等量变换的? 半径为R的球的表面积为 R2 练习:长方体的一个顶点上三条棱长分别为3、4、5,是它的八个顶点都在同一球面上,则这个球的表面积是 。 (答案50元)(三) 典例分析 课本P47 例4和P29例5(四) 巩固深化、反馈矫正正方形的内切球和外接球的体积的比为 ,表面积比为 。 (答案: ;3 :1)在球心同侧有相距9cm的两个平行截面,它们的面积分别为49cm2和400cm2,求球的表面积。 (答案:2500cm2)分析:可画出球的轴截面,利用球的截面性质求球的半径(五) 课堂小结 本节课主要学习了球的体积和球的表面积公式的推导,以及利用公式解决相关的球的问题,了解了推导中的“分割、求近似和,再由近似和转化为准确和”的解题方法。(六) 评价设计 作业 P30 练习1、3 ,B(1)

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1