ImageVerifierCode 换一换
格式:DOCX , 页数:34 ,大小:193.41KB ,
资源ID:24727190      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/24727190.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(中考数学复习专题开放性问题含详细参考答案.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

中考数学复习专题开放性问题含详细参考答案.docx

1、中考数学复习专题开放性问题含详细参考答案中考数学复习专题-开放性问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类 二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。三、中考考点精讲考点一:条件开放型 条件开放题是指结论给

2、定,条件未知或不全,需探求与结论相对应的条件解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求例1 (义乌市)如图,在ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF添加一个条件,使得BDFCDE,并加以证明你添加的条件是 (不添加辅助线)考点: 全等三角形的判定。810360 专题: 开放型。分析: 由已知可证ECDFBD,又EDCFDB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等故添加的条件是:DE=DF(或CEBF或ECD=DBF或DEC=DFB等);解答: 解:(1)添加

3、的条件是:DE=DF(或CEBF或ECD=DBF或DEC=DFB等)(2)证明:在BDF和CDE中BDFCDE点评: 三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍例2 (宁德)如图,点E、F分别是AD上的两

4、点,ABCD,AB=CD,AF=DE问:线段CE、BF有什么数量关系和位置关系?并加以证明考点: 全等三角形的判定与性质;平行线的性质;平行线的判定与性质。810360 专题: 探究型。分析: CE和BF的关系是CE=BF(数量关系),CEBF(位置关系),理由是根据平行线性质求出A=D,根据SAS证ABFDCE,推出CE=BF,AFB=DEC即可解答: CE和BF的数量关系是CE=BF,位置关系是CEBF,证明:ABCD,A=D,在ABF和DCE中,ABFDCE,CE=BF,AFB=DEC,CEBF,即CE和BF的数量关系是CE=BF,位置关系是CEBF点评: 本题考查了全等三角形的性质和

5、判定,平行线的性质和判定,主要考查学生运用性质进行推理的能力考点三:条件和结论都开放的问题:此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,因此必须认真观察与思考,将已知的信息集中分析,挖掘问题成立的条件或特定条件下的结论,多方面、多角度、多层次探索条件和结论,并进行证明或判断例3 (广元)如图,在AEC和DFB中,E=F,点A、B、C、D在同一直线上,有如下三个关系式:AEDF,AB=CD,CE=BF(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果,那么”)(2)选择(1)中你写出的一个命题,说明它正确的理由考点: 全等三

6、角形的判定与性质。810360 专题: 开放型。分析: (1)如果作为条件,作为结论,得到的命题为真命题;如果作为条件,作为结论,得到的命题为真命题,写成题中要求的形式即可;(2)若选择(1)中的如果,那么,由AE与DF平行,利用两直线平行内错角相等得到一对角相等,再由AB=DC,等式左右两边都加上BC,得到AC=DB,又E=F,利用AAS即可得到三角形ACE与三角形DBF全等,根据全等三角形的对应边相等得到CE=BF,得证;若选择如果,那么,由AE与FD平行,利用两直线平行内错角相等得到一对角相等,再由E=F,CE=BF,利用AAS可得出三角形ACE与三角形DBF全等,根据全等三角形的对应边

7、相等可得出AC=BD,等式左右两边都减去BC,得到AB=CD,得证解答: 解:(1)如果,那么;如果,那么;(2)若选择如果,那么,证明:AEDF,A=D,AB=CD,AB+BC=BC+CD,即AC=DB,在ACE和DBF中,ACEDBF(AAS),CE=BF;若选择如果,那么,证明:AEDF,A=D,在ACE和DBF中,ACEDBF(AAS),AC=DB,ACBC=DBBC,即AB=CD点评: 此题考查了全等三角形的判定与性质,平行线的性质,利用了转化的数学思想,熟练掌握全等三角形的判定与性质是解本题的关键考点四:编制开放型:此类问题是指条件、结论、解题方法都不全或未知,而仅提供一种问题情境

8、,需要我们补充条件,设计结论,寻求解法的一类题,它更具有开放性例4 (南京)看图说故事请你编写一个故事,使故事情境中出现的一对变量x、y满足图示的函数关系,要求:指出变量x和y的含义;利用图中的数据说明这对变量变化过程的实际意义,其中须涉及“速度”这个量考点: 函数的图象。810360 专题: 开放型。分析: 结合实际意义得到变量x和y的含义;由于函数须涉及“速度”这个量,只要叙述清楚时间及相应的路程,体现出函数的变化即可解答: 解:本题答案不唯一,下列解法供参考该函数图象表示小明骑车离出发地的路程y(单位:km)与他所用的时间x(单位:min)的关系小明以400m/min的速度匀速骑了5mi

9、n,在原地休息了6min,然后以500m/min的速度匀速骑车回出发地点评: 对于此类编制开放型问题,是一类新型的开放型问题,它要求学生的思维较发散,写出符合题意的正确答案即可,难度要求不大,但学生容易犯想当然的错误,叙述不够准确,如单位的问题、符合实际等要求,在解题中应该注意防范四、中考真题演练一、填空题1(娄底)写出一个x的值,使|x1|=x1成立,你写出的x的值是 考点: 绝对值。810360 专题: 开放型。分析: 根据非负数的绝对值等于它本身,那么可得x10,解得x1,故答案是2(答案不唯一)解答: 解:|x1|=x1成立,x10,解得x1,故答案是2(答案不唯一)点评: 本题考查了

10、绝对值,解题的关键是知道负数的绝对值等于其相反数,非负数的绝对值等于它本身2(宁波)写出一个比4小的正无理数 考点: 实数大小比较。810360 专题: 开放型。分析: 根据实数的大小比较法则计算即可解答: 解:此题答案不唯一,举例如:、等故答案为:(答案不唯一)点评: 本题考查了实数的大小比较,解题的关键是理解正无理数这一概念3(连云港)写一个比大的整数是 考点: 实数大小比较;估算无理数的大小。810360 专题: 开放型。分析: 先估算出的大小,再找出符合条件的整数即可解答: 解:134,12,符合条件的数可以是:2(答案不唯一)故答案为:2(答案不唯一)点评: 本题考查的是实数的大小比

11、较,根据题意估算出的大小是解答此题的关键4(天津)将正比例函数y=6x的图象向上平移,则平移后所得图象对应的函数解析式可以是 (写出一个即可)考点: 一次函数图象上点的坐标特征。810360 专题: 开放型。分析: 根据“上加下减”的原则在函数解析式后加一个大于0的数即可解答: 解:“上加下减”的原则可知该函数的解析式可以是:y=6x+1(答案不唯一)故答案为:y=6x+1(答案不唯一)点评: 本题考查了一次函数的性质,只要比例系数k相同,则直线平行,保证k不变的条件下,b的正负决定平移的方向5(益阳)写出一个在实数范围内能用平方差公式分解因式的多项式: 考点: 实数范围内分解因式。81036

12、0 专题: 开放型。分析: 显然答案不唯一只需符合平方差公式的应用特征即可解答: 解:答案不唯一,如 x23=x2()2=(x+)(x)故可填 x23点评: 此题考查在实数范围内分解因式,属开放型试题,比较简单6(湛江)请写出一个二元一次方程组 ,使它的解是考点: 二元一次方程组的解。810360 专题: 开放型。分析: 根据二元一次方程解的定义,可知在求解时,应先围绕x=2,y=1列一组算式,然后用x,y代换即可列不同的方程组答案不唯一,符合题意即可解答: 解:此题答案不唯一,如:,+得:2x=4,解得:x=2,将x=2代入得:y=1,一个二元一次方程组的解为:故答案为:此题答案不唯一,如:

13、点评: 本题主要考查了二元一次方程组的解的定义此题属于开放题,注意正确理解定义是解题的关键7(镇江)写出一个你喜欢的实数k的值 ,使得反比例函数y=的图象在每一个象限内,y随x的增大而增大考点: 反比例函数的性质。810360 专题: 开放型。分析: 根据反比例函数的性质得出关于k的不等式,求出k的取值范围,在此取值范围内找出一个符合条件的k的值即可解答: 解:反比例函数y=的图象在每一个象限内,y随x的增大而增大,k20,解得k2k可以为:1(答案不唯一)故答案为:1(答案不唯一)点评: 本题考查的是反比例函数的性质,根据题意得出关于k的不等式,求出k的取值范围是解答此题的关键8(陕西)在同

14、一平面直角坐标系中,若一个反比例函数的图象与一次函数y=2x+6的图象无公共点,则这个反比例函数的表达式是 (只写出符合条件的一个即可)考点: 反比例函数与一次函数的交点问题。810360 专题: 开放型。分析: 两个函数在同一直角坐标系中的图象无公共点,其k要满足2x26xk=0,0即可解答: 解:设反比例函数的解析式为:y=,一次函数y=2x+6与反比例函数y=图象无公共点,则,2x26xk=0,即=(6)28k0解得k,则这个反比例函数的表达式是y=;故答案为:y=点评: 此题考查了反比例函数与一次函数的交点问题解题的关键是:两个函数在同一直角坐标系中的图象无公共点,其k要满足2x26x

15、k=0,09(广西)请写出一个图象在第二、第四象限的反比例函数解析式,你所写的函数解析式是 考点: 反比例函数的性质。810360 专题: 开放型。分析: 根据反比例函数y=(k0)的性质可知,反比例函数过二、四象限则比例系数k为负数,据此即可写出函数解析式解答: 解:由于反比例函数图象经过二、四象限,所以比例系数为负数,故解析式可以为y=(答案不唯一)故答案为:y=(答案不唯一)点评: 本题考查了反比例函数的性质对于反比例函数(k0),(1)k0,反比例函数图象在一、三象限;(2)k0,反比例函数图象在第二、四象限内10(赤峰)存在两个变量x与y,y是x的函数,该函数同时满足两个条件:图象经

16、过(1,1)点;当x0时,y随x的增大而减小,这个函数的解析式是 (写出一个即可)考点: 反比例函数的性质。 专题: 开放型。分析: 设此函数的解析式为y=(k0),再把(1,1)代入求出k的值即可解答: 解:设此函数的解析式为y=(k0),此函数经过点(1,1),k=1,答案可以为:y=(答案不唯一)故答案为:y=(答案不唯一)点评: 本题考查的是反比例函数的性质,此题属开放性题目,答案不唯一11(三明)如图,在ABC中,D是BC边上的中点,BDE=CDF,请你添加一个条件,使DE=DF成立你添加的条件是 (不再添加辅助线和字母)考点: 全等三角形的判定与性质。专题: 开放型。分析: 答案不

17、唯一根据AB=AC,推出B=C,根据ASA证出BED和CFD全等即可;添加BED=CDF,根据AAS即可推出BED和CFD全等;根据AED=AFD推出B=C,根据ASA证BEDCFD即可解答: 解:答案不唯一,如AB=AC或B=C或BED=CFD,或AED=AFD等;理由是:AB=AC,B=C,根据ASA证出BEDCFD,即可得出DE=DF;由B=C,BDE=CDF,BD=DC,根据ASA证出BEDCFD,即可得出DE=DF;由BED=CFD,BDE=CDF,BD=DC,根据AAS证出BEDCFD,即可得出DE=DF;AED=AFD,AED=B+BDE,AFD=C+CDF,又BDE=CDF,B

18、=C,即由B=C,BDE=CDF,BD=DC,根据ASA证出BEDCFD,即可得出DE=DF;故答案为:答案不唯一,如AB=AC或B=C或BED=CFD或AED=AFD点评: 本题考查了全等三角形的判定,题目具有一定的代表性,是一道比较好的题目12(盐城)如图,在四边形ABCD中,已知ABDC,AB=DC在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再加上的一个条件是 (填上你认为正确的一个答案即可)考点: 矩形的判定;平行四边形的判定。810360 专题: 证明题;开放型。分析: 根据平行四边形的判定先推出四边形是平行四边形,再根据矩形的定义即可得出答案解答: 解:添加的条件是A=9

19、0,理由是:ABDC,AB=DC,四边形ABCD是平行四边形,A=90,平行四边形ABCD是矩形,故答案为:A=90点评: 本题考查了平行四边形的判定和矩形的判定的应用,能熟练地运用判定定理进行推理是解此题的关键,此题是一道比较好的题目13(佳木斯)如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件 ,使四边形AECF是平行四边形(只填一个即可)考点: 平行四边形的判定与性质。810360 专题: 开放型。分析: 根据平行四边形性质得出ADBC,得出AFCE,根据有一组对边相等且平行的四边形是平行四边形推出即可解答: 解:添加的条件是AF=CE理由是:四边形ABCD是平

20、行四边形,ADBC,AFCE,AF=CE,四边形AECF是平行四边形故答案为:AF=CE点评: 本题考查了平行四边形的性质和判定的应用,主要考查学生运用性质进行推理的能力,本题题型较好,是一道开放性的题目,答案不唯一15(郴州)如图,D、E分别是ABC的边AB、AC上的点,连接DE,要使ADEACB,还需添加一个条件 (只需写一个)考点: 相似三角形的判定。810360 分析: 由A是公共角,利用有两角对应相等的三角形相似,即可得可以添加ADE=C或AED=B;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D可以添加AD:AC=AE:AB或ADAB=AEAC,继而求得答案解答:

21、解:A是公共角,当ADE=C或AED=B时,ADEACB(有两角对应相等的三角形相似),当AD:AC=AE:AB或ADAB=AEAC时,ADEACB(两组对应边的比相等且夹角对应相等的两个三角形相似),要使ADEACB,还需添加一个条件:答案不唯一,如ADE=C或AED=B或AD:AC=AE:AB或ADAB=AEAC等故答案为:此题答案不唯一,如ADE=C或AED=B或AD:AC=AE:AB或ADAB=AEAC等点评: 此题考查了相似三角形的判定此题属于开放题,难度不大,注意掌握有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似定理的应用三、解答题16(张家界)先化简

22、:,再用一个你最喜欢的数代替a计算结果考点: 分式的化简求值。810360 专题: 开放型。分析: 先根据分式混合运算的法则把原式进行化简,再选取合适的a的值代入进行计算即可解答: 解:原式=+1=+1a0,a2,a可以等于1,当a=1时,原式=1+1=2点评: 本题考查的是分式的化简求值,在解答此题时要注意a不能取0、2、217(新疆)先化简,然后从2x2的范围内选择一个合适的整数作为x的值代入求值考点: 分式的化简求值。810360 专题: 开放型。分析: 将原式被除式的两项通分并利用同分母分式的减法法则计算,除式分母提取2并利用平方差公式分解因式,同时利用除以一个数等于乘以这个数的倒数将

23、除法运算化为乘法运算,约分后得到最简结果,然后从已知解集中找出整数解为1,2,1,2,0,但是当x=1,1,0时原式没有意义,故x取2或2,将x=2或2代入化简后的式子中,即可求出原式的值解答: 解:()=,由解集2x2中的整数解为:2,1,0,1,2,当x=1,1,0时,原式没有意义;若x=2时,原式=2;若x=2时,原式=2点评: 此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,本题x的值不能取1,1,0,做题时要注意18(吉林)在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小

24、芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进(1)情境a,b所对应的函数图象分别是 、 (填写序号);(2)请你为剩下的函数图象写出一个适合的情境考点: 函数的图象。810360 专题: 推理填空题;开放型。分析: (1)根据图象,一段一段的分析,再一个一个的排除,即可得出答案;(2)把图象分为三部分,再根据离家的距离进行叙述,即可得出答案解答: 解:(1)情境a:小芳离开家不久,即离家一段路程,此时都符合,发现把作业本忘在家里,于是返回了家里找到了作业本,即又返回家,离家的距离是0,此时都符合,又去

25、学校,即离家越来越远,此时只有返回,只有符合情境a;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进,即离家越来越远,且没有停留,只有符合,故答案为:,(2)情境是小芳离开家不久,休息了一会儿,又走回了家点评: 主要考查学生的观察图象的能力,同时也考查了学生的叙述能力,用了数形结合思想,题型比较好,但是一道比较容易出错的题目19(衢州)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BE=DF,连接AE、CF请你猜想:AE与CF有怎样的数量关系?并对你的猜想加以证明考点: 平行四边形的性质;全等三角形的判定与性质。810360 专题: 探究型。分析: 由四边形AB

26、CD是平行四边形,即可得ABCD,AB=CD,然后利用平行线的性质,求得ABE=CDF,又由BE=DF,即可证得ABECDF,继而可得AE=CF解答: 解:猜想:AE=CF证明:四边形ABCD是平行四边形,ABCD,AB=CD,ABE=CDF,在ABE和CDF中,ABECDF(SAS),AE=CF点评: 此题考查了平行四边形的性质与全等三角形的判定与性质此题比较简单,注意掌握平行四边形的对边平行且相等,注意数形结合思想的应用20(佳木斯)在菱形ABCD中,ABC=60,E是对角线AC上一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF(1)若E是线段AC的中点,如图1,易证:BE=E

27、F(不需证明);(2)若E是线段AC或AC延长线上的任意一点,其它条件不变,如图2、图3,线段BE、EF有怎样的数量关系,直接写出你的猜想;并选择一种情况给予证明考点: 菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质。810360 专题: 综合题。分析: (1)根据菱形的性质结合ABC=60可得ABC是等边三角形,再根据等腰三角形三线合一的性质可得CBE=ABC=30,AE=CE,所以CE=CF,然后等边对等角的性质可得F=CEF,根据三角形的一个外角等于与它不相邻的两个内角的和求出F=30,从而得到CBE=F,根据等角对等边的性质即可证明;(2)图2,过点E作EGBC,交AB于点

28、G,根据菱形的性质结合ABC=60可得ABC是等边三角形,然后根据等边三角形的性质得到AB=AC,ACB=60,再求出AGE是等边三角形,根据等边三角形的性质得到AG=AE,从而可以求出BG=CE,再根据等角的补角相等求出BGE=ECF=120,然后利用“边角边”证明BGE和ECF 全等,根据全等三角形对应边相等即可得证;图3,证明思路与方法与图2完全相同解答: 证明:(1)四边形ABCD为菱形,AB=BC,又ABC=60,ABC是等边三角形,E是线段AC的中点,CBE=ABC=30,AE=CE,AE=CF,CE=CF,F=CEF,F+CEF=ACB=60,F=30,CBE=F,BE=EF;(2)图2:BE=EF(1分)图3:BE=EF(1分)图2证明如下:过点E作EGBC,交AB于点G,四边形ABCD为菱形,AB=BC,又ABC=60,ABC是等边三角形,AB=AC,ACB=60,(1分)又EGBC,AGE=ABC=60,又BAC=60,

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1