1、动作电位的变化过程动作电位的变化过程:1静息相(处于极化状态,即静息电位状态)2去极相(首先C膜的静息电位由-90MV减小到0,叫去极化。C膜由0MV转变为外负内正的过程叫反极相)3复极相(动作电位的上升支很快从顶点快速下降,膜内电位由正变负,直到接近静息电位的水平,形成曲线的下降芝,叫复极化时相。动作电位的上升支和下降支持续时间都很短,历时不超过2毫秒,所记录下的图形很尖锐,叫锋电位。锋电位之后还有一个缓慢的电位波动,这种时间较长波动较小的电位变化叫后电位肌纤维的兴奋收缩耦联:通常把以肌C膜的电位变化为特征的兴奋过程和以肌丝滑行为基础的收缩过程之间的终结过程成为;=兴奋收缩耦联的三步骤:1兴
2、奋通过横小管系统传导到肌C内。2三联管结构处的信息传递。3肌质网对CA再回收。骨骼肌的生理特性及兴奋条件:生理特性有兴奋性,收缩性。条件:1刺激强度(引起肌肉兴奋的最小刺激为阙刺激)2刺激的作用时间(足够时间)3刺激强度变化率(刺激电流由无到有或由大到小的变化率)骨骼肌的收缩形式:根据肌肉收缩时的长度变化分四种。1向心收缩(肌肉收缩时长度缩短的收缩。向心收缩时肌肉长度缩短、起止点相互靠近,引起身体运动。且,肌肉张力增加出现在前,长度缩短出现在后。但肌肉张力在肌肉开始收缩后即不再增加,直到收缩结束。又叫等张收缩。是做功的=负荷重量*负荷移动距离。整个运动范围内,肌肉用力最大的一点称为顶点。在此关
3、节角度下杠杆效率最差,只有顶点处肌肉才可能达到最大力量收缩。例子:肱二头肌收缩使肘关节屈曲举起某一恒定负荷)2等长收缩(肌肉在收缩时其长度不变,这种收缩叫-。有两种情况:肌肉收缩时对抗不能克服的负荷;当其他关节由于肌肉离心收缩或向心收缩发生运动时,等长收缩可使某些关节保持一定位置,为其他关节的运动创造适宜的条件。例子:十字支撑,直角支撑)3离心收缩(肌肉在收缩产生张力的同时被拉长的收缩。可以防止运动损伤。肌肉做负功。例子:高处跳下,脚先着地,通过反射活动使股四头肌和臀大肌产生离心收缩)4等动收缩(在整个关节运动范围内肌肉以恒定的速度,且肌肉收缩时产生的力量始终与阻力相等的肌肉收缩。整个收缩过程
4、速度恒定。自由泳的划水动作。等动练习是提高肌肉力量的有效手段。)骨骼肌不同收缩形式的比较:1力量(肌肉 收缩时产生的张力大小取决于肌肉收缩类型和收缩速度。关于离心收缩为何能产生较大张力?牵张反射,肌肉受到外力的牵张时会反射性引起收缩。在离心收缩时肌肉受到强烈的牵张,因此会反射性引起肌肉强烈收缩。2离心收缩时肌肉中的弹性成分被拉长而产生阻力,同时肌肉中的可收缩成分也产生最大阻力。而向心收缩只有可收缩成分肌纤维在收缩时产生克服阻力的肌肉张力。)2肌电(等速向心收缩和离心收缩时,在一定范围内积分肌电与肌肉张力成正比。在负荷相同情况下,离心收缩的IEMG较向心收缩低。)3代谢(在输出功率相同的情况下,
5、肌肉离收缩时所消耗的能量低于向心收缩,耗氧量也低,与代谢相关的生理指标低于向心)4肌肉酸痛(做退让工作时容易引起肌肉酸痛和损伤,)骨骼肌收缩的力学表现:1绝对力量和相对力量(某一块肌肉做最大收缩时产生的张力为该肌肉的绝对肌力。相对肌力是指肌肉单位横断面积所具有的肌力。)2肌肉力量与运动(力量速度曲线。张力大小取决于横桥数目,收缩速度取决于能量释放速率和肌球蛋白ATP酶活性。要想得到较快的收缩速度就必须降低负荷量。肌肉力量与 运动速度。当以同样速度运动时,力量大的表现出来的力量也大。肌肉力量与爆发力。P=maD/t)肌纤维类型的划分:1根据收缩速度(快肌纤维和慢肌)2根据收缩及代谢特征(快缩、糖
6、酵解型,快缩、氧化、糖酵解型和慢缩、氧化型。)3根据收缩特性及色泽(快缩白、快缩红、慢缩红)4布茹克司(I型,II型。II型又可分IIa IIb IIc三个亚型)不同类型肌纤维的形态特征、机能及代谢特点:一、不同肌纤维的形态特征(快肌纤维的直径较慢肌纤维大,含有较多的收缩蛋白。肌只网发达。慢肌纤维毛细血管网较快肌纤维丰富,含有较多肌红蛋白,较多线立体且体积大。慢肌纤维由较小的运动神经原支配,运动神经纤维较细,传导速度慢。快肌纤维由较大运动神经原支配,传导快)二、生理学特征(1肌纤维类型与收缩速度:快肌纤维收缩速度快。2肌纤维类型与肌肉力量:肌纤维的收缩力量与单个肌纤维的直径和运动单位中所包含的
7、肌纤维数量有关。快肌纤维的直径大雨慢肌纤维,且快肌运动单位中所包含的肌纤维数量往往多于慢肌运动单位。因此,快肌运动单位的收缩力量明显大于慢肌运动单位。3肌纤维类型与疲劳:快肌纤维在收缩时能产生较大力量但容易疲劳。慢肌纤维抵抗疲劳能力比快肌纤维强。因为:线立体体积大,数目多,有氧代谢酶活性高,肌红蛋白含量丰富,毛细血管网发达。)三、代谢特征(慢肌纤维中氧化酶系统活性高于快肌纤维。慢肌纤维氧化反应场所线立体体积大且多,快肌中少。快肌中与无氧代谢有关的酶火星高。)运动时不同类型运动单位的动员:1在以较低的强度运动时,慢肌纤维首先被动员;而在运动强度较大时,块肌纤维先动员。2为了增强快肌纤维的代谢能力
8、,训练计划必须包括大强度的练习,如果要提高慢肌纤维的代谢能力,训练计划就要由低强度、持续时间较长的练习组成肌纤维的类型与运动:1参加时间短、强度大的项目运动员,骨骼肌中的快肌纤维百分数较从事耐力项目员和一般人高。2从事耐力3项目的员的慢肌纤维白分比高于非耐里项目的员或一般人。3即需要耐力又需要速度的项目员,其肌肉中快肌纤维和慢肌纤维百分比相等训练对肌纤维的影响:能使肌纤维形态和代谢特征发生较大的变化。1肌纤维选择性肥大(耐力训练可引起慢肌纤维选择性肥大,速度、爆发力训练可引起块肌纤维选择性肥大。)2酶活性改变(有选择性增强,长跑运动员的肌肉中,与氧化供能有密切关系的SDH活性高,而与糖酵解及磷
9、酸化有关的LDH及PHOSP活性最低,短跑员相反)肌电的研究与应用: 定义:骨骼肌在兴奋时,会由于肌纤维动作电位的传导和扩布而发生电位变化称肌电。用适当的方法将骨骼肌兴奋时发生的电位变化引导、放大并记录所得到的图形叫肌电图 1利用肌电测定神经的传导速度。2利用肌电评定骨骼肌的机能状态。(肌肉工作过程中肌电幅值的变化。肌电幅值是指肌电的信号的振幅大小。反映其指标的有:积分肌电和均方根振幅。疲劳时肌电振幅声高。肌肉工作过程中肌电频谱变化,反映其指标的有:平均功率频率和中心频率。随疲劳加深,肌电频谱左移,平均功率频率下降)3利用肌电评价肌力(当肌肉以不同负荷进行收缩时,积分肌电同肌力成正比关系。)4
10、利用肌电进行动作分析:多导肌电记录仪记录肌电,根据每块肌肉的放电顺序和肌电幅度,结合高速摄像等技术,对员的动作进行分析)感受器:分布在体表或组织内部的一些专门感受机体内外环境改变的结构或装置。感受器的一般胜利特征:1适宜刺激(每种感受器都有它最敏感的刺激,这刺激就是感受器的-)2换能作用(各种感受器可将其接受的各种形式的刺激能量转化为神经冲动传向中枢,叫-)3编码作用(能将刺激的环境信息转移到动作电位排列组合中)4适应现象(当一定强度刺激作用于感受器,其感觉神经产生的动作电位频率,将随刺激作用时间延长而逐渐减少)感觉信息的传递:1特异性传入系统(各感受器传入的神经冲动要经过脊髓神经或脑干,上行
11、到丘脑换神经原,并安排列顺序投射到大脑皮质特定区域,引起特异的感觉叫=)2非特异性传入系统(特异投射传入系统的神经县委竟脑干时,发出侧枝与脑干网状结构的神经原发生突触联系,通过多次更换神经原后,上行抵达丘脑内侧部再交换神经原,发出纤维弥散地投射到大脑皮质的广泛区域。功能:维持和改变大脑皮质的兴奋状态,保持机体觉醒)大脑皮质的功能定位:各种感觉传入冲动在大脑皮质进行分析和综合,产生相应的感觉。大脑皮质的不同区域在功能上具有不同的作用。感觉柱:皮层体表感觉区神经C的纵向排列构成大脑皮质的基本功能单位。大脑皮质的感觉分析功能:1体表感觉(投射区位于中央后回第一体表感觉区。特点:感觉冲动向皮质投射呈左
12、右交叉,但头面部感觉冲动投射到左右双侧皮质;投射区域的空间位置是倒置的下肢的感觉区在皮质顶部,上肢感觉区在中间,头面部感觉区在低;投射区的大小与不同体表部位的感觉灵敏程度有关。)2运动感觉区(投射区域位于中央前回四六区,可引起受试者企图发动肢体运动的主观感觉。)3视觉感觉区(位于枕叶距状裂上下缘17 18区如一侧枕叶损会两眼偏盲,双侧伤全盲)4听觉和前庭觉(位于慑叶的慑横回和上回41 42区)5内脏感觉(位于第一第二感觉区)视觉器官:折光系统(角膜房水晶状体玻璃体)感觉系统(视网膜)视觉的形成:平行光-折光系统(折射)-视网膜(成像)-视网膜上的感光C将物理光刺激转化为神经冲动-经神经到丘脑-
13、大脑皮质感觉区投射视觉视调节:正常人的眼球折光系统的折光能力,能随物体的移近而相应的增加,使物像落在视网膜上而看清物体,这调节过程叫-视调节分类:1晶状体调节(是一个有弹性的组织,其调节是一个复杂神经反射活动。当看近物时,睫状肌收缩,悬韧带松弛,晶状体向前后凸出,增加曲率,使物像移到视网膜上。看远物时-。)2瞳孔调节(看近物时,可反射性引起双侧瞳孔缩小,称瞳孔调节反射。瞳孔的大小随光线强度而改变的现象叫瞳孔对光反射。强光-刺激-视网膜感受C-经神经纤维-中枢(中脑动眼N核)-从副交感神经传出-使瞳孔括约肌收缩-瞳孔缩小)视网膜的感光机能:1视锥C(分布于视网膜的中央凹处,能感受强光刺激,形成明
14、视觉,色觉。)2视杆C(分布于视网膜的周边处,对光的敏感度高,能接受弱光刺激,形成暗视觉)视网膜的光化学反应:1视锥C和视杆C含有能吸收光能的光敏物质(感光色素)在光线的作用下能发生一系列的化学反应叫光化学反应。2视锥C中的感光色素为视锥色素,视杆C中的色素为视紫红质(分子组成为视蛋白和视黄醛)3在光的作用下视紫红质分解-全反视黄醛和视蛋白-分解过程中使视杆C去极化,并产生冲动,冲动沿神经传到大脑枕叶产生视觉。反视黄醛+视黄醛酶还原为VA经眼内和肝脏有关酶催化-顺视黄醛。其跟视蛋白生成视紫红质(补充作用)色觉:光无颜色,但作用于视网膜上的视锥C后,就能引起大脑产生色觉。三原色学说:视网膜上有三
15、种视锥C,分别含红绿蓝三种色光敏感的感光色素。不同波长的光线对三种感光物质的刺激不同,故可引起不同颜色。视力:又叫视敏度,眼对物体微细结构的分辨能力,通常以分辨两点之间最小距离为标准。视野:单眼注视正前方一点时,该眼所能看到的空间范围。鼻侧镊侧,白黄红绿。立体视觉产生的原因:因为同一物体在两眼视网膜上所成的像并不完全相同,右眼看到的物体右侧面较多,左眼看到的左侧多。其位置虽略不同,但又在相称点附近。最后经中枢N系统综合、眼肌平衡:眼球运动靠运动眼球肌:上下直肌、内外、上下斜肌。 正视:当眼注视正前方,若对称眼肌紧张度相等,眼球瞳孔在正中央处。 斜视:如果其中一条眼肌紧张度稍大,瞳孔偏向一方。隐
16、斜视:若一条眼肌紧张度虽稍大,但在平衡时靠对抗肌紧张度的加强予以补偿,瞳孔仍保持在正中央。耳:外耳(耳廓 外耳道)中耳 内耳又叫迷路(耳蜗 椭圆囊 球囊 三个半规管。后三个叫前庭器官)听觉传播:声波-耳廓经外耳道鼓膜(振动)、-引起听骨链(增压效应作用于内耳0圆窗上-内淋巴液振荡)-引起外淋巴、基底膜振动-刺激毛C产生去极化感受器电位-通过突出传递在听N纤维末梢产生总和电位和动作电位-沿神经到皮层听觉中枢-听觉耳蜗作用:内有一条基底膜,位于基底膜上的螺旋器是声音感受器。毛C顶部有上百条排列整齐的听纤毛,听纤毛与盖膜直接接触或埋植在盖膜的胶状物质中。基底膜振动时听纤毛弯曲,使毛C听神经产生神经冲
17、动,冲动沿听神经传向听中枢。位觉:身体进行各种变速运动时,引起的前庭器官中的位觉感受器兴奋并产生的感觉叫-前庭器的感受装置与适宜刺激:1球囊、椭圆囊和半规管之间以充有内淋巴的小细管道相联系。2球囊和椭圆囊的壁上有囊斑,囊斑中有感受性毛C,其纤毛插入耳石膜内,耳石膜表面有许多CACO3结晶称耳石。3由于重力对耳石的作用方向改变,耳石膜与毛C之间的空间位置发生改变,使毛C兴奋,冲动传到大脑皮层前庭感觉区,产生头部空间位置改变的感觉。4人做直线加速或减速耳石膜因惯性位置移毛C纤毛弯曲兴奋反射调节肌肉张力维持身体平衡冲动传到大脑皮层感觉区,空间位置变速感觉。5三个半规管互相垂直,分别称前后水平半规管。
18、每个半规管均有壶腹,其壁上有壶腹嵴,壶腹嵴上有感受性毛C,毛C的纤毛上覆盖许多胶状物质,形如帽状,叫终帽。半规管壶腹嵴的适宜刺激是旋转正负加速度。当旋转运动开始、停止或突变速时,由于内淋巴的惯性作用,使终帽弯曲,刺激毛C而兴奋,冲动经前庭N传入中枢,产生旋转运动感觉。水平饶垂直轴左右旋转,前后半规管饶前后横轴。运动生理学1.运动生理学是研究人体在体育运动的影响下机能活动变化规律的科学。2.人体的基本胜利特征:新陈代谢、兴奋性、应激性、适应性。应激性:机体和一切活组织对周围环境条件的变化有发生反应的能力,这种能力和特性叫做应激性。可以引起反应的环境的变化叫刺激。3.神经调节:特点是迅速而且精确;
19、体液调节的特点是缓慢而广泛,作用持久。体液调节:机体的某些细胞产生某些特殊的化学物质,包括各种内分泌腺所分泌的激素,通过细胞外液或借助于血液循环被送到一定器官和组织,以引起特有的反应,并以此调节着人体的新陈代谢,生长发育,生殖以及对肌肉活动的适应等重要机能。4.反馈分正反馈和负反馈5.肌肉的生理特性:兴奋性、收缩性、传导性。6.引起兴奋的刺激条件:A刺激的强度B刺激强度的变化速率。C刺激作用时间。8.时值:法国生理学家拉披克提出以两倍基强度的刺激作用于组织引起兴奋所需的最短时间,作为衡量兴奋性的指标。拉披克把这一特定时间称为是值。屈肌的时值比伸肌短。9.“全和无现象:用阈下刺激单个肌纤维,不能
20、引起收缩;若用阈刺激就可以引起收缩,如果加大刺激(用阈上刺激)肌纤维的收缩幅度并不会增长,这种现象叫“全和无现象。14.跳跃式传导:在有髓鞘纤维中,它的兴奋和静息电位部位间的局部电流集中地通过邻近的朗氏结使之去极化,所以有髓鞘纤维中总是一个朗氏结兴奋,再刺激下一个朗氏结,是跳跃式的传导。15.兴奋-收缩藕连:兴奋由神经传递给肌肉的传递过程。(神经肌肉传递):运动神经末梢去极化,改变神经膜的通透性,使Ca进入末梢内,导致突触小泡的破裂,释放出Ach,Ach经过突触间隙扩散至终膜与终膜上的受体(R)结合,形成R-Ach复合体,R-Ach是终膜去极化,产生终板电位(EPP)(EPP)达到一定的阈限时
21、,作用于肌膜使它发放可传播的动作电位,肌膜动作电位通过收缩耦联引起肌纤维收缩。16.肌纤维的兴奋收缩过程:A肌膜的电位变化触发肌肉收缩即兴奋收缩耦联。B横桥的运动引起肌丝滑动。C引起肌收缩后的舒张。17.单收缩的过程:潜伏期、缩短期、宽息期。18.强直收缩:肌肉因成串刺激而发生的持续性缩短状态称强直收缩。21.肌纤维的分类;快肌纤维(白肌纤维)、慢肌纤维(红肌纤维)22.主要的生理特征:慢肌纤维(红肌纤维):运动神经元(小)、放电频率(低)、收缩速度(低)、耐力(高)、毛细血管密度(高)、血红蛋白含量(高)、糖酵解酶活性(低)、线粒体酶活性(高)、肌原纤维ATP酶活性(低)。 白肌纤维与之相反
22、。23不同运动项目肌纤维百分比:短跑的快肌纤维占70;长跑的慢肌纤维占70。中长跑介于其中。24.运动对肌纤维的影响:A肌纤维的选择性肥大(耐力项目引起慢肌纤维选择性肥大;速度爆发力引起快肌纤维选择性肥大)B肌纤维内酶活性增强 C肌纤维类型百分组成的变化。28.血液的机能:血液的机能通过循环系统完成的。A维持内环境的相对稳定作用。 B运输作用。 C调节作用。 D防御和保护作用。 29.渗透压:溶液促使水分子通过半透膜从浓度低的一侧向浓度高的一侧扩散的力量。称为渗透吸引力。大小决定于单位体积溶液中溶质分子或颗粒的数量。 30.等渗溶液;以血浆的正常渗透压为标准,与血浆正常渗透压很相似的溶液称等渗
23、溶液。0。9%。氯化钠5%葡萄糖。 31.正常人血浆的PH 值7。35-7。45 平均7。432最主要的缓冲对 NaHCO3_- H2CO3 20/134.红细胞(血红蛋白)的功能: A运输气体 O2、CO2 B缓冲血液酸碱度。35.血红蛋白的含量;男子1215克;女子1114克。36.运动性贫血:在训练期间(特别是训练初期)或比赛期间Hb红细胞数减少,出现暂时性贫血想象称运动性贫血。 原因:A红细胞破坏增多, B蛋白质补充不足 C由于缺铁而引起贫血。 防止:调整能动量或补充足够的蛋白质和铁。37.合胞体:肌细胞虽有界限,但兴奋波极易彼此之间传播,在活动时有如单一细胞,在生理学上称之为”合胞体
24、”38.心肌的生理特性:A自动节律性。B传导性。C兴奋性。D收缩性。39.心肌细胞收缩的特点:A对细胞外液Ca的浓度有明显的依耐性。B全或无的同步收缩C不发生强直收缩。41.心率:每分钟心脏搏动的次数,正常安静时60-100次之间。42。心电图的波形及意义 、R、S、T。 P波表示:左右心房除极化时所产生的电变化。PR(R-Q)期间:表示心房除极化开始到心室除极化开始所需的时间。QRS波群表示左右心室先后兴奋除极化所产生的电变化。S-T段表示心室除极完毕,复极尚未开始各部分之间无电位差。T波表示心室复极化过程中的电变化。Q-T表示心室开始兴奋除极化到全部复极化所需的时间。 心电图仅反映的是心脏
25、兴奋的产生,传导和恢复过程中的生物电变化,仅反映心肌的兴奋,并不反映心肌的机械收缩过程。47.运动过程中心血管的反映:A血液的重新分配B心输出量增加C血压发生变化,收缩压上升,舒张压下降。48.心力储备:是指心输出量能随机体代谢需要而增长的能力。49.动脉血压的形成:心室收缩射血,外周阻力,大动脉弹性。50.心缩期只有每搏输出量的1/3即约2030毫升的血液流向外周;其余2/3血液留在主动脉。51.影响动脉血压的因素;A每搏输出量。B心率。C外周阻力。D大动脉管的弹性。E循环血量52.影响静脉回流的因素:A心脏收缩。B呼吸运动。C骨骼肌的挤压作用。D重力和体位E静脉管壁的收缩。53.减压反射:
26、颈动脉窦及主动脉弓的压力感受性反射。(作用是一种快速控制动脉血压相对恒定的自身调节。54.训练对心血管系统的影响:可促使人体的血管系统的形态、机能和调节能力产生良好的适应,从而提高人体工作能力。表现以下几个方面:A窦性心率徐缓。B运动性心脏增大。C心血管机能改善。55.呼吸过程的三个环节:A外呼吸。(通气过程和换气过程)B气体运输。C内呼吸。56.肺通气的动力是呼吸肌舒缩完成呼吸动力。呼吸形式:隔式呼吸(腹式呼吸)、肋式呼吸(胸式呼吸)、混合呼吸。 四个互不叠加的肺容量:潮气量、补吸气量、补呼气量、余气量。57. 每分肺泡通气量(呼吸深度解剖无效腔呼吸道)*呼吸频率。60. 血红蛋白与氧的可逆
27、结合,氧分压高、氧结合。 61. 氧离作用:在氧分压低的组织内,氧合血红蛋白迅速放出氧,形成还原血红蛋白.生理意义:“S”形氧离曲线的上有重要的生理意义。当氧分压在60100 毫米汞柱一段时,坡度不大,形式平坦,而使氧分压从100毫米汞柱至80毫米汞柱时,血氧饱和度从98降至96。这对高原适应或轻度呼吸机能不全的人均有好处,只要能保持动脉血中氧分压自在60毫米汞柱以上,血氧饱和度仍有90,不致造成供氧不足的严重后果。 曲线下段显示出氧分压在60毫米汞柱以下时,曲线逐渐变陡,意味着氧分压下降,使血氧饱和度明显下降。氧分压为4010毫米汞柱时,曲线更陡,此时;氧分压稍有下降,血氧饱和度就大幅度下降
28、,释放出大量的氧保证组织换气。这种特点对肌肉活动,保证供氧都很有利。 影响因素:CO2升高。PH值下降、体温上升,都使血红蛋白对氧的亲和力下降,氧离曲线右移,释放出更多的氧。反之氧离曲线左移。64.氧利用率(动脉血含量静脉血含量)/动脉血含量*10066.CO2的运输。A物理运输6%。B化学结合形式: 与Hb结合7%,与血液中的Na、k结合8767.呼吸与酸碱平衡:(稳态结合)。P8768。血液的化学成分的改变对呼吸运动的调节。CO2上升、O2的下降、H的上升都促进呼吸。70。运动后过量的氧耗:a满足因剧烈运动后体温仍处于较高水平所需要的氧。b满足心脏活动仍处于较高水平所需要的氧。c满足肺功能
29、仍处于较高水平所需要的氧d血液中茶酚胺仍处于较高水平, 也导致较多的氧。D最主要是消除乳酸氧债。71。在运动时如何合理的运用呼吸方法:A减少呼吸道阻力。B节制呼吸频率,加大呼吸深度,提高肺泡通气量。C呼吸方法适应于技术动作变换的需要D合理运用憋气。74.能量系统的一般特点:P115 有氧氧化供能与无氧氧化供能?P11675.影响糖酵解能力因素有:A人体对缓冲酸性产物能力的大小。B人体各组织细胞,特别是脑细胞对酸的耐受能力大小C可能与体内糖原的含量有关。76.运动训练与能量利用机能节省化:表现在完成同样强度的工作时,经过系统训练后,需氧量减少,能源消耗两也减少,即完成同样的运动负荷时,有训练者消
30、耗能量减少。77.长期训练能量节省化的主要原因:训练改进了动作技能,使动作更协调自如。自动化程度提高,减少了多余的动作,使得能量的利用更经济了;同时运动训练也提高了呼吸循环系统机能水平,工作效率提高。这样消耗于供能器官本身的能量也减少了,如在完成较小强度的运动负荷时,有训练者比无训练者的心率较低;呼吸频率较少,因而心脏及呼吸器官消耗的能量也就较少。 主要意义:从能量消耗的观点来看,能量利用愈节省,运动效率也愈高,这就为取得优异成绩创造了 有利条件,特别是对持续时间长,总需能量大的运动项目来讲,就更是如此。78.散热过程:A绝大部分的热量由皮肤散发。B小部分由呼吸道蒸发散热。C少量的热量用来加温
31、吸入的冷空气或冷饮冷食D随尿和粪排泄而散发。 皮肤散热的四种方式:A辐射B传导C对流D蒸发。79.运动时体温的变化和调节;在高温下如何调节体温。()新书)80.应激:应激是机体应付任何需要时的非特异性反应。81.感受器的一般生理特性:A适宜刺激B换能作用。82.视杆细胞对暗光有感受能力。视锥细胞对强光和颜色有感受能力。83.透明的角膜、房水、晶状体和玻璃体构成折光系统。84.晶状体调节P15585.视紫红质:视杆细胞中含有一种淡紫红色的结合蛋白质称视紫红质;86.中央视觉:视锥细胞多的中央部分,一方面感色能力强,同时清晰地分辨物体,用这部分看东西称为中央视觉。 周围视觉:视杆细胞多的边缘部分视
32、野范围广,故能用于观察空间范围和正在运动的物体称为周围视觉。87.立体视觉:用单眼视物时,只能看到物体的平面,即只能看到物体的高度和宽度。若用双眼视物时,能补充地看到物体的深度,从而形成立体视觉。88.三原色学说:红、绿、蓝或紫。89.正视:当眼向远方注视时,若对称的眼肌紧张度相等,则眼球瞳孔在正前方称为正视。 斜视:若对称的眼肌中,其中一条肌肉紧张度大,一侧瞳孔偏向一方,称为斜视。 隐斜视:有的人某一条眼肌的紧张度虽然稍大,在平时能由某对抗肌紧张度稍大加强来加以补偿,瞳孔仍能保持在正中位置称为隐斜视。90。行波学说解释(看)91.椭圆囊与球囊内的囊斑的适宜刺激为耳石重力作用与直线运动的加速度。 半规管中壶腹峭毛细胞的
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1