ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:45.35KB ,
资源ID:24282067      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/24282067.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(固体电化学.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

固体电化学.docx

1、固体电化学固体电化学任何一个电化学装置都是由电介质和两个电极相互连接组成的。或用于传感器,或用于化学电源。为提高其性能就要对这三部分及他们之间的相互作用进行研究。这不仅应对固体电解质本身的电学性质(电导率、离子电导率及与环境的关系、使用条件)进行研究;并且还要研究电介质与电极间的相互作用。本章将介绍电化学的有关基本知识。第一节 固体电解质的电导和极化 一 电导和极化固体电解质中存在离子的大量空位,在电场作用下,离子可以迁移,离子在迁移过程中受到的阻力是电阻,我们常用电阻(欧姆)的倒数电导(1/欧姆)来表示离子导体样品的导电能力。、离子迁移率和离子电导率离子的移动速度为 V(cm/s ), 与电

2、场强度 E (V/cm )成正比.(E= d/dx; 电压梯度 V/cm) V = U E其中U是离子的迁移率:单位电场强度作用下载流子的迁移速度。单位:(cm2/Vs)。载流子产生的电流密度 I 与导电粒子浓度 C、粒子带电量(q = Z e)及粒子的迁移速度 U 成正比:I = C q V具有多种电荷载体的固体电解质在电场中产生的总电流密度 I 等于各种载流子产生的分电流密度之和: I =I =Ii+Ie+IhI = Ck qk Vk = Ck qk Uk Ek 固体电解质中载流子的电导率 :单位长度单位截面电介质的电阻的倒数,或:当长度为1厘米的1立方厘米物体两端加1伏电压时,通过的电流

3、安培数:因为: I =k Ek = k = Ck qk Uk如果是混合导体,i为离子电导率,e 为电子电导率; 为固体电解质的总电导率。3、 离子迁移数和电子迁移数固体电解质中离子及电子迁移数是导电离子及电子的电导率在固体电解质总电导率中所占的比例。可用下式表示: tI = 1 - te对于少量缺陷的固体电解质材料(电导率比较低),根据热力学理想溶液特性,其电导率与温度的关系为: 固体电解质的电导率均随温度的升高而增大。以lg(T)(1/T)作图,从图中曲线的斜率可得活化能 E0。但是,对于高电导率的固体电解质材料,其导电机理不能用稀释点缺陷理论来解释,现在还没有得出理论推导的关系式;可按Ar

4、rhenius方程式进行处理,离子晶体的电导率与温度的关系可以表示为: E0 是电导活化能;k是Boltzmann常数。 以lg()对(1T)作图,由直线的斜率可得出活化能E0。4、 电极极化固体电解质在使用和测量时,特别是与不可逆电极或可逆性较差的电极联结时,在电场的作用下,固体电解质中正负离子迁移,常可观察到电极界面上的极化现象(极化是由一种平衡态过度到另一种平衡态的过程)。极化电动势是逐渐建立的,随时间的增长,在界面上形成一与电场相反的极化电势,部分地抵消了原来的电动势。当极化电动势达到最大时,电流随时间下降到最小,达到稳态。这个随时间衰减的电流称为吸收电流或电容电流。界面上具有很大的交

5、换电流的电极在电化学上称为可逆电极;交换电流接近于零的电极称为极化电极(或阻塞电极)介于两者之间的叫半阻塞电极。交换电流与电极极化的关系 式中,是极化电动势;i 是电极极化时通过的电流;i0 是交换电流。常用的可逆电极有:1、 金属电极与该金属阳离子导电的电介质体系; 如: Ag AgI ; Ag | Ag2S ; Na1-xHgx Na-AL2O32、 金属电极与该金属盐阴离子导电的电介质体系; 如:Pb PbF2 等。3、 可透过气体的金属电极; 如: (Po2),Pt ZrO2 。4、 固溶体电极:各种金属氧化物或硫族元素化合物电极与相应的碱金属离子导体相接触,碱金属离子可通过电极的固相

6、扩散,与电极形成化学计量可连续变化的嵌入化合物。 如:Li | LiCoO, V6O13 ; TiS2 等。 混合导体材料电极可以大大地降低极化电动势。阻塞电极:当电介质为纯离子导体(没有电子导电),与其它金属电极组成全阻塞电极;如:Pt AgI ; C AgBr Ag。半阻塞电极有两种:1、 电子导体引出的半阻塞电极: 由于电介质有时存在部分电子导电,因此在离子阻塞的情况下,电子可由电极通过电解质;如:Pt Ag2S (电子可通过,而Ag+离子不能通过)2、 离子导体引出的半阻塞电极: 如:C AgCl AgI二、阻抗测量固体电解质样品的阻抗测量结果在很大程度上决定于它在电极上的界面极化阻抗

7、,因此,对测量电极的选择极其重要。为避免电极极化和接触电阻对样品电阻测量结果的影响,要求电极与样品接触可靠(润湿性要好),接触电阻要小;并且,电极与样品的可逆性(存在导电离子的交换)要好,如:测量银离子导体电阻,可通过喷涂、溅射等方法,在样品表面生成银电极。1、直流法:直流法测量电导(阻抗),要求测量电极对电解质有很好的可逆性,尽可能减少电极与电解质接触电阻和接触电容(以避免电极极化的影响)。有时由于固体电解质在室温时固体电解质与电极间润湿不好,如:Na |Na-Al2O3 ,可以经过高温融化或电解处理,改善润湿性。可采用四探针法测量高电导样品,以避免测量电极与样品间的接触电阻影响。电极可逆性

8、不好时,由于电极的极化,用直流法测量电阻时,有极间电容存在,测量电流会逐渐减小,只有采用瞬态(t=0)测量才可以测得真实电阻,直流法电阻测量结果有局限性。对于阻抗较大的电介质材料也不宜使用直流法,因为电介质材料上不能加较高的电压,以免电介质分解。所以一般不采用直流法测量电介质的阻抗。2、交流伏安法和交流电桥法:使用交流电可以避免电解质分解;可精确地测定固体电解质的电导和电阻。测量频率通常高于0.1Hz-104Hz;阻抗大于10欧姆时,可用单臂电桥;阻抗小于10欧姆时,为消除引线电阻的影响,须使用双臂电桥。在交流外电场作用下,极化过程和测量频率 f 有关,电场电压变化快,离子迁移速度 U 快,电

9、导率增大(电阻下降)。交流阻抗与测量频率f有如下关系 式中,R是测量频率为无限大时的固体电解质电阻,此时极化电阻为零;K为常数,与电极性质有关:使用不同电极材料,产生的极化影响不同,测量值曲线的斜率不同;只有频率高时,测量的结果才接近样品的真实值。测量各种频率下样品的电阻,作出电阻和频率倒数的直线图,外推至频率为无穷大的电阻值即为样品的电阻R。 也可使用交流伏安法测量固体电解质的电阻 R = V/I - jZ0其中,zo为串联于样品上电极的极化电容容抗,作出阻抗与频率倒数的直线,外推至频率无穷时的电阻值即为样品的电阻。所以,在同一频率下,交流伏安法测量的阻抗大于交流电桥法测定的阻抗。但两法外推

10、至频率无穷大时的电阻值是相同的。但是固体电解质在测量时,除了有测量电极的极化阻抗影响外,还存在固体电介质内部不均匀晶界的极化现象,造成的阻抗,交流电桥无法区分。3、交流阻抗谱由于电极界面极化,直流测量电导时测量电流会随时间变化(减小);交流测量电导时则与测量频率有关。测量多晶样品时,存在电极极化阻抗,固体电解质内部还存在不均匀相界(晶界)的极化阻抗。此时固体电解质样品阻抗测量的等效电路可以看成为:测量的电解质本身的阻抗Ze 、电极界面阻抗Zi和电极与电介质界面电容Cg等的串并联电路的总阻抗。因此用交流法测量时,测量值会随频率变化。因为样品上加一交流电压 V(t)=Asint 样品电流 I(t)

11、=Asin(t+)得到的阻抗 Z = V/I ,是一个复数,模为:|Z| = A/A; 相位角为:。电容的容抗与电阻相位差为900; 测量的阻抗是它们的矢量和,得用复数形式表示: Z = Z + jZ ;为复数平面上第四象限的一个点。 其中:j = (-1)1/2; Z = -1/C ; = 2f ; 测量的数值为阻抗的模 Z= (Z2+ Z2) 1/2 ; 相位角 = tg-1(Z/ Z) ;也可以用复阻抗的倒数复导纳来表示: Y = 1/Z ; Y = y + jy ;Y = y exp(j) ; y = Y cos ; y = Y sin ; 存在相互关系: Z/ y = Z/ y =

12、(Z)2+( Z)2 = 1/( y)2+( y)2 ;一般可写成复平面第一象限形式: Z = Z - jZ ; Y = y + jy应用交流电桥测量样品阻抗,可以得到样品的电阻和容抗之和的模。如果把不同频率(10-1-104Hz)下测出的电阻(Z)和容抗(Z)在复数平面上(横轴为电阻 Z,纵轴为容抗Z)作复数平面图,得到一系列的点组成的复数平面图,此复数平面图称为交流阻抗谱。分析此等效电路的测量图形,可以得到电解质的阻抗和电极的相应性质。 Z= R , ;Cg = 2f Z 。各种等效电路的阻抗谱图:1、 纯电阻的交流阻抗谱图为复数平面中实轴上的一个点。2、 纯电容的交流阻抗谱图为复数平面中

13、虚轴上的一串点。3、 电阻与电容串联的阻抗谱图为复平面平行于虚轴的一串点。4、 电阻与电容并联的阻抗谱图为复平面中以实轴为直径、过原点的上半圆;圆的半径为 R/2 ; 圆心为(R/2,0)半圆与实轴的交点R 为电阻;最高点为 X = R/2 = 1/c ;C = f R 即为与之并联的电容值。5、 R1,C并联再与电阻R2串联;阻抗谱与上图相似,半圆与实轴的两个交点,分别为:R2 和 R1+R2 ;半圆的圆心为 ( R2+ R1/2,0) ; 半径为 R1/2 。用不可逆电极测量单晶阻抗并联的电阻电容为电极与电解质间的极间界面电阻和电容。 如果,使用全阻塞电极,则电极与电解质间的界面电阻接近无

14、穷大,可简化成第3种情况。6、 R1,C1并联再与电阻R2,C2串联;阻抗谱图与上图相似;半圆的低频端多了一串与虚轴平行的点。用不可逆电极测量多晶电阻时,并联的电阻电容为晶界的电阻和电容;7、 R1,C1并联再与电容C2串联;阻抗谱图与4相似;在半圆的低频端多了一串平行于虚轴的点。8、 两组R1,C1并联电路串联在一起,再与电阻R串联:其阻抗谱为实轴上两个连在一起的半圆;与实轴的交点分别为 R, R + Ri1, R + Ri1 + Ri2;两半圆的圆心坐标分别为:(R+ Ri1/2, 0),(R+ Ri1+ Ri2/2,0);半径分别为 :Ri1/2, Ri2/2 。 以上为一些电阻,电容组

15、合的典型等效电路图和相应的交流阻抗谱图。一般的样品测量电路都可以化作它们的连接;例如:一个样品的测量装置可看成是下面的等效电路图 Cab Ra Cg1 Cg2 Rb Re R1 R2 图中Re为待测样品的阻抗;Ra,Rb分别为两个电极的电阻(包括电极引线电阻);Cab为两电极间电容;R1,R2分别为两个测量电极与电介质的界面电阻;Cg1,Cg2分别为两测量电极与电介质的界面电容。一般情况下,Cab很小,Ra,Rb也很小(因为是金属导线),可略去。设两电极性质相同,这时电路可简化成界面电阻与电容并联再与样品体电阻Re串联的等效电路,与第五种情况相同。如果样品是多晶,应考虑晶界电阻 Rj 和晶界电

16、容 Cj 的并联电路(在第五种情况中再串联一个Rj,Cj的并联电路);此时,交流阻抗谱图为两个半圆,圆心坐标分别为(Re+Rj/2,0)、(Re+Rj+R1/2,0);与实轴分别有三个交点,Re, Re+Rj, Re+Rj+R1;一个圆的半径 Rj/2,一个圆的半径为 R1/2 。可以得到晶粒界面电阻Rj,电容Cj 的一些性质。例如:一般随着温度的升高,相应于晶界部分的阻抗会逐渐地减小,阻抗谱图上的半圆会减小以致消失。如果改变电极的性质,在上述阻抗谱图上可以看出在低频部分R1,C1的变化。1、 阻塞电极与半阻塞电极:电极与电介质界面很难发生离子流动,电阻很大;界面阻抗主要来自双电层电容,因此,

17、交流阻抗谱图的低频端为一平行于虚轴的直线(相应于阻塞电极)或为一很大半径的圆弧(半阻塞电极)。等效电路图与第六种情况相同。2、 非阻塞电极:如果考虑接触电阻和电容,相当于第七种情况;半圆的大小相应于电极阻抗的大小。只有在接触条件非常好的情况下可以忽略接触电阻和电容。3、 由界面物质扩散控制的电极过程:如果电极与电介质界面存在离子和分子的扩散过程,界面极化的等效电路相当于一个极化电容Cs与电池电阻的串联,极化电容与频率的平方根成反比;在阻抗谱图的低频端为一倾斜45度的斜线。交流阻抗谱对于固体电解质的研究很有用,并且还可以对电极的性质进行研究。现在有专用的仪器:频率阻抗分析仪,不必用电桥每一个频率

18、测一次阻抗,然后再做图,使用该仪器可自动连续改变频率得到一系列阻抗与频率的数据。用编好的软件可在计算机上很快做出阻抗谱图。第二节 固体电解质中的电子电导在许多固体电解质中还存在有电子导电,有时电子电导较大,成为混合导体。应用于传感器的固体电解质,我们希望其离子迁移数 99,这样得到的测量结果可以满足使用要求。但是,应用固体电解质作为电池隔膜,即使存在很小的电子导电也将引起电池的自放电损耗。为了确保测量数据的可靠,应该了解固体电解质的电子导电产生的原因和电子迁移数的测量方法。固体电解质的电子导电(电子和空穴导电)具有半导体的性质,与电子能带结构、离子性质和环境条件等有关;而离子导电只决定于物质的

19、晶体结构。固体电解质的导电率决定于物质的化学成分、结构和环境条件: = Ck qk Uk 其中 Ck为固体电解质中离子和电子载体的浓度。材料中含有杂质造成晶体缺陷,形成间隙原子或离子空位,同时也会造成自由电子或电子空穴。特别是材料中混入某些变价元素(Fe,Mn,Co,Mo等杂质),很容易产生自由电子,由于电子的迁移率是一般离子的100-1000倍,所以电解质中即使存在少量的自由电子,也会造成明显的电子导电。所以要求固体电解质材料纯度要高。一、离子导体中,电子导电随环境分压的变化:即使是纯物质,也一定会产生缺陷。若一价元素M,X 生成的二元化合物 MX中生成 Frenkel缺陷;间隙离子和空位同

20、时成对产生,会发生三个独立的缺陷化学平衡反应为: MM + Vi Mi+ + VM-; 此式表示间隙离子 Mi+和离子空位 VM-成对产生和湮灭(Mi+ 和 VM- 是 Frenkel对);MM , VI为正常晶格位置。 0 e- + h+ ; 此式表示电子和孔穴的产生和湮灭; Mex + Vi Mi Mi+ + e- 第三式表示间隙离子 Mi+和电子 e-的复合,产生间隙中性原子Mi ;间隙原子可以逸出到环境中(Mex),在固体中留下一个间隙空位Vi;以及其相反反应 :环境中的中性原子Mex进入晶体间隙空位Vi ;离解成间隙离子 Mi+和电子 e-)。晶体中存在电荷载流子 Mi+ ,VM-

21、,e- ,h+;在不同条件下,有可能忽略某两项。上面反应的热力学平衡条件可用化学势表示: Mi+ + VM- = 常数 e- + h+ = 0Mi+ + e-= M*式中, M*是中性 M原子的化学势。当晶体缺陷浓度 Ci 较低时,化学势与浓度的关系为: i = i0 + kT ln Cii0为标准化学势;k为Boltzmann常数。在浓度小的情况下可以用质量作用定律: Mi+ VM- = v02 np = n02 exp(-Eg/KT) nMi+ = exp(-x*/KT) = Px-1式中,v0是晶体本征缺陷浓度; n0是本征电子浓度(v0,n0 是常数);n,p表示晶体中电子和空穴的浓度

22、;Eg是价带和导带的能量差,即禁带宽度; 及为质量作用定律的比例常数;Px 和 x 分别为组成X的分压和化学势(独立变量)。在晶体中加入一定量的二价负离子Ax2- 替代 X- 离子时,在结构内形成一带负电的“受主中心”Ax-,由于晶体是中性的,有平衡条件为 n + Ax-+ VM- = p + Mi+ 对纯化合物, Ax- = 0;因此,可由已知的化合物的浓度与化学势的有关常数计算出以上四种载流子的浓度。实际上,对于特定的体系,上式等号两边各只有一项是主要的,其它项可以忽略,平衡关系可以变成是:1、 对于本征离子导体, Mi+ = VM- ;(纯缺陷电介质,缺陷浓度为常数,杂质浓度很低。)2、

23、 n 型混合导体 , n = Mi+ ;3、 p 型混合导体 , p = VM- ;4、 以受主为主的离子导体: Mi+ = Ax- ; (浓缺陷电介质,缺陷数量决定于杂质量。)环境中组分 X的化学势 x*变化时,间隙离子和空位的化学势Mi+ , VM- 都是常数。不随组分化学势变化。M+ = 0Z价金属离子,解离的化学势平衡条件可表示为: M* = MZ+ + Ze M* = MZ+ + Ze因为正常晶格离子和间隙位置浓度是常量(不随组分的化学势x*变化而变化:MZ+=0);环境的组分 M的化学势 M* 是可以改变的, 所以: e = 1/Z M*即:电子化学势的变化 e与环境中性组分的化学

24、势或分压的变化建立了上式的关系。对于空穴化学势变化 h+和组分的化学势变化 X*也可得出相似的关系。由于电子的化学势 e 与电子浓度的对数 logn成线性关系: (e logn),且环境组分化学势 M* 与组分的分压 PM也有同样的关系(M* lgPM), 所以有:n (PM)1/Z对于MyXz二元化合物,应用Gibbs-Duhem公式 yM* + zX* = 0可得出等效的表达式:n (PX)1/y 因为电子的迁移率大于离子迁移率100-1000倍,并且固体电解质中以离子导电为主,本征电子浓度远小于本征离子浓度:n0 Pp),导体为空穴导电为主(P型半导体);组分分压小于电子导电特征分压(P

25、X Pe)时,导体呈电子导电为主(N型半导体)。以氧化锆氧离子导电的固体电解质为例子:在高温高氧分压条件下,气相中的氧原子有进入电解质夺取电子、占据电解质中氧空位的趋势,形成的主要缺陷是间隙离子和电子孔穴; 1/2 O2 O-2 + 2h其平衡常数为:K2 = O-2 p / P1/2O2 如果氧离子浓度 O-2很大,可认为是一个常数,因此,有孔穴浓度与氧分压的四分之一次方成正比关系 : p Po21/4。高温高氧分压条件下,孔穴电导率与氧分压的四分之一次方成正比。在高温极低氧分压条件下,电解质中晶格上的氧离子有放出电子、成为氧原子、逸出晶体的趋势,产生的主要缺陷是氧空位和自由电子: O。 1

26、/2 O2(g)+ Vo+2 + 2e平衡常数 K3 = VO+2n2PO21/2 当氧空位很大时,VO+2可看成常数;电子浓度与氧分压的关系: n PO-1/4 。氧分压很低时,氧化锆固体电解质的电子导电率和环境氧分压的负四分之一次方成正比。应用三维坐标可以表示固体中离子、电子电导率与外界分压和温度之间的关系。从离子和电子电导两个平面的相交部分可以得出固体电解质离子导电区和电子导体区的边界,电解质导电区对于判断电解质在环境条件下的可用性是非常重要的。在高温高氧分压条件下,氧化锆导体中应该考虑存在空穴导电。p Po21/4 。所以可以说高温高氧分压条件下空穴电导率与氧分压的四分之一次方成正比。p Po21/4 在高温低氧分压时,氧化锆电解质的电子电导率与氧分压的负四分之一次方成正比。n Po2-1/4

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1