1、中考数学专题复习第八讲一元二次方程及应用20XX年中考数学专题复习第八讲:一元二次方程及应用【基础知识回顾】一、 一元二次方程的定义: 1、一元二次方程:含有个未知数,并且未知数最 方程 2、一元二次方程的一般形式: 其中二次项是 一次项是 , 是常数项【名师提醒:1、在一元二次方程的一般形式要特别注意强调ao这一条件2、将一元二次方程化为一般形式时要按二次项、一次项、常数项排列,并一般首项为正】二、一元二次方程的常用解法: 1、直接开平方法:如果aX2 =b 则X2 = X=X= 2、配方法:解法步骤:1、化二次项系数为 即方程两边都 二次项系数 2、移项:把 项移到方程的 边 3、配方:方
2、程两边都加上 把左边配成完全平方的形式 4、解方程:若方程右边是非负数,则可用直接开平方法解方程 3、公式法:如果方程aX2 +bx+c=0(a0) 满足b2-4ac0,则方程的求根公式为 4、因式分解法:一元二次方程化为一般形式式,如果左边分解因式,即产生A.B=0的形式,则可将原方程化为两个 方程,即 从而方程的两根【名师提醒:一元二次方程的四种解法应根据方程的特点灵活选用,较常用到的是 法和 法】三、一元二次方程根的判别式 关于X的一元二次方程aX2 +bx+c=0(a0)根的情况由 决定,我们把它叫做一元二次方程根的判别式,一般用符号 表示当 时,方程有两个不等的实数根当 时,方程看两
3、个相等的实数根当 时,方程没有实数根【名师提醒:在使用根的判别式解决问题时,如果二次项系数中含有字母一定要保证二次项系数】一、 一元二次方程根与系数的关系: 关于X的一元二次方程aX2 +bx+c=0(a0)有两个根分别为XX则X+X = X =二、 一元二次方程的应用:解法步骤同一元一次方程一样,仍按照审、设、列、解、验、答六步进行常见题型1、 增长率问题:连续两率增长或降低的百分数Xa(1+X)2=b2、 利润问题:总利润= X或利润3、 几个图形的面积、体积问题:按面积的计算公式列方程【名师提醒:因为通常情况下一元二次方程有两个根,所以解一元二次方程的应用题一定要验根,检验结果是否符合实
4、际问题或是否满足题目中隐含的条件】【重点考点例析】考点一:一元二次方程的有关概念(意义、一般形式、根的概念等)例1 (2012兰州)下列方程中是关于x的一元二次方程的是()Ax2+=0 Bax2+bx+c=0C(x-1)(x+2)=1 D3x2-2xy-5y2=0思路分析:一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数由这四个条件对四个选项进行验证,满足这四个条件者为正确答案解:A、原方程为分式方程;故本选项错误;B、当a=0时,即ax2+bx+c=0的二次项系数是0时,该方程就不是一元二次方程;故本选项错误;C、由原方
5、程,得x2+x-3=0,符合一元二次方程的要求;故本选项正确;D、方程3x2-2xy-5y2=0中含有两个未知数;故本选项错误故选C点评:本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2对应训练1(2012惠山区)一元二次方程(a+1)x2-ax+a2-1=0的一个根为0,则a=11解:一元二次方程(a+1)x2-ax+a2-1=0的一个根为0,a+10且a2-1=0,a=1故答案为1点评:本题考查了一元二次方程的定义:含一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程,其一般式为ax2+
6、bx+c=0(a0)也考查了一元二次方程的解的定义考点二:一元二次方程的解法例2 (2012安徽)解方程:x2-2x=2x+1思路分析:先移项,把2x移到等号的左边,再合并同类项,最后配方,方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解解:x2-2x=2x+1,x2-4x=1,x2-4x+4=1+4,(x-2)2=5,x-2=,x1=2+,x2=2-点评:此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方;(4)选择用配方法解一元二次方
7、程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数例3 (2012黔西南州)三角形的两边长分别为2和6,第三边是方程x2-10x+21=0的解,则第三边的长为()A7B3C7或3D无法确定思路分析:将已知的方程x2-10x+21=0左边分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解得到原方程的解为3或7,利用三角形的两边之和大于第三边进行判断,得到满足题意的第三边的长解:x2-10x+21=0,因式分解得:(x-3)(x-7)=0,解得:x1=3,x2=7,三角形的第三边是x2-10x+21=0的解,三角形的第三边为3或7,当三角形第三边为
8、3时,2+36,不能构成三角形,舍去;当三角形第三边为7时,三角形三边分别为2,6,7,能构成三角形,则第三边的长为7故选A点评:此题考查了利用因式分解法求一元二次方程的解,以及三角形的边角关系,利用因式分解法解方程时,首先将方程右边化为0,左边分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化两个一次方程来求解对应训练2(2012台湾)若一元二次方程式x2-2x-3599=0的两根为a、b,且ab,则2a-b之值为何?()A-57B63C179D1812D2解:x2-2x-3599=0,移项得:x2-2x=3599,x2-2x+1=3599+1,即(x-1)2=3600,x-1=6
9、0,x-1=-60,解得:x=61,x=-59,一元二次方程式x2-2x-3599=0的两根为a、b,且ab,a=61,b=-59,2a-b=261-(-59)=181,故选D3(2012南充)方程x(x-2)+x-2=0的解是()A2B-2,1C-1D2,-13D考点三:根的判别式的运用例3 (2012襄阳)如果关于x的一元二次方程kx2-x+1=0有两个不相等的实数根,那么k的取值范围是()Ak Bk且k0 C-k D-k且k0思路分析:根据方程有两个不相等的实数根,则0,由此建立关于k的不等式,然后就可以求出k的取值范围解:由题意知:2k+10,k0,=2k+1-4k0,-k且k0故选D
10、点评:此题考查了一元二次方程根的判别式,一元二次方程根的判别式=b2-4ac一元二次方程根的情况与判别式的关系为:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根例4 (2012绵阳)已知关于x的方程x2-(m+2)x+(2m-1)=0(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长思路分析:(1)根据关于x的方程x2-(m+2)x+(2m-1)=0的根的判别式的符号来证明结论;(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根分类讨论:当该直角三
11、角形的两直角边是1、3时,由勾股定理得斜边的长度为:;当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为;再根据三角形的周长公式进行计算解:(1)证明:=(m+2)2-4(2m-1)=(m-2)2+4,在实数范围内,m无论取何值,(m-2)2+44,即4,关于x的方程x2-(m+2)x+(2m-1)=0恒有两个不相等的实数根;(2)根据题意,得12-1(m+2)+(2m-1)=0,解得,m=2,则方程的另一根为:3;当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为:;该直角三角形的周长为1+3+=4+;当该直角三角形的直角边和斜边分别是1、3时,由勾
12、股定理得该直角三角形的另一直角边为2;则该直角三角形的周长为1+3+2=4+2点评:本题综合考查了勾股定理、根的判别式、一元二次方程解的定义解答(2)时,采用了“分类讨论”的数学思想对应训练3(2012桂林)关于x的方程x2-2x+k=0有两个不相等的实数根,则k的取值范围是()Ak1Bk1Ck-1Dk-13A4(2012珠海)已知关于x的一元二次方程x2+2x+m=0(1)当m=3时,判断方程的根的情况;(2)当m=-3时,求方程的根4解:(1)当m=3时,=b2-4ac=22-43=-80,原方程无实数根;(2)当m=-3时,原方程变为x2+2x-3=0,(x-1)(x+3)=0,x-1=
13、0,x+3=0,x1=1,x2=-3考点四:一元二次方程的应用例5 (2012南京)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元(1)若该公司当月售出3部汽车,则每部汽车的进价为万元;(2)如果汽车的售价为28万元/部,该公司计划当月返利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)思路分析:(1)根据若当月仅售
14、出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.12,即可得出答案;(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0x10,以及当x10时,分别讨论得出即可解:(1)若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,若该公司当月售出3部汽车,则每部汽车的进价为:27-0.12=26.8,故答案为:26.8;(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:28-27-0.1(x-1)=(0.1x+0.
15、9)(万元),当0x10,根据题意,得x(0.1x+0.9)+0.5x=12,整理,得x2+14x-120=0,解这个方程,得x1=-20(不合题意,舍去),x2=6,当x10时,根据题意,得x(0.1x+0.9)+x=12,整理,得x2+19x-120=0,解这个方程,得x1=-24(不合题意,舍去),x2=5,因为510,所以x2=5舍去,答:需要售出6部汽车点评:本题考查了一元二次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系并进行分段讨论是解题关键对应训练5(2012乐山)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造
16、成该蔬菜滞销李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元试问小华选择哪种方案更优惠,请说明理由5解(1)设平均每次下调的百分率为x由题意,得5(1-x)2=3.2解这个方程,得x1=0.2,x2=1.8因为降价的百分率不可能大于1,所以x2=1.8不符合题意,符合题目要求的是x1=0.2=20%答:平均每次下调的百分率是20%(2)小华选择方案一购买更优惠理由:方案一所需费用为:3.20
17、.95000=14400(元),方案二所需费用为:3.25000-2005=15000(元)1440015000,小华选择方案一购买更优惠【聚焦山东中考】一、选择题1(2012日照)已知关于x的一元二次方程(k-2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是()Ak且k2 Bk且k2 Ck且k2 Dk且k21C1解:方程为一元二次方程,k-20,即k2,方程有两个不相等的实数根,0,(2k+1)2-4(k-2)20,(2k+1-2k+4)(2k+1+2k-4)0,5(4k-3)0,k,故k且k2故选C3(2012潍坊)如图是某月的日历表,在此日历表上可以用一个矩形圈出
18、33个位置相邻的9个数(如6,7,8,13,14,15,20,21,22)若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A32B126C135D1443D3解:根据图象可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为:x,则最大数为x+16,根据题意得出:x(x+16)=192,解得:x1=8,x2=-24,(不合题意舍去),故最小的三个数为:8,9,10,下面一行的数字分别比上面三个数大7,即为:15,16,17,第3行三个数,比上一行三个数分别大7,即为:22,23,24,故这9个数的和为:8+9+10+15+16+17+22+23+24=144故选:D5(
19、2012日照)已知关于x的一元二次方程(k2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是() Ak且k2 B k且k2 C k且k2 D k且k2考点: 根的判别式;一元二次方程的定义。专题: 计算题。分析: 根据方程有两个不相等的实数根,可知0,据此列出关于k的不等式,解答即可解答: 解:方程为一元二次方程,k20,即k2,方程有两个不相等的实数根,0,(2k+1)24(k2)20,(2k+12k+4)(2k+1+2k4)0,5(4k3)0,k,故k且k2故选C点评: 本题考查了根的判别式和一元二次方程的定义,根据一元二次方程的定义判断出二次项系数不为0是解题的关键
20、6(2012烟台)下列一元二次方程两实数根和为4的是() Ax2+2x4=0 B x24x+4=0 C x2+4x+10=0 D x2+4x5=0考点: 根与系数的关系。专题: 计算题。分析: 找出四个选项中二次项系数a,一次项系数b及常数项c,计算出b24ac的值,当b24ac大于等于0时,设方程的两个根为x1,x2,利用根与系数的关系x1+x2=求出各项中方程的两个之和,即可得到正确的选项解答: 解:A、x2+2x4=0,a=1,b=2,c=4,b24ac=4+16=200,设方程的两个根为x1,x2,x1+x2=2,本选项不合题意;B、x24x+4=0,a=1,b=4,c=4,b24ac
21、=1616=0,设方程的两个根为x1,x2,x1+x2=4,本选项不合题意;C、x2+4x+10=0,a=1,b=4,c=10,b24ac=1640=280,即原方程无解,本选项不合题意;D、x2+4x5=0,a=1,b=4,c=5,b24ac=16+20=360,设方程的两个根为x1,x2,x1+x2=4,本选项符号题意,故选D点评: 此题考查了一元二次方程根与系数的关系,一元二次方程ax2+bx+c=0(a0),当b24ac0时,方程有解,设方程的两个解分别为x1,x2,则有x1+x2=,x1x2=二、填空题7(2012聊城)一元二次方程x2-2x=0的解是7x1=0,x2=28(2012
22、青岛)如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米若设道路宽为x米,则根据题意可列出方程为8(22-x)(17-x)=3009(2012德州)若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是9a-1解:当a=0时,方程是一元一次方程,有实数根,当a0时,方程是一元二次方程,若关于x的方程ax2+2(a+2)x+a=0有实数解,则=2(a+2)2-4aa0,解得:a-1故答案为:a-110(2012莱芜)为落实“两免一补”政策,某市20XX年投入教育经费25
23、00万元,预计20XX年要投入教育经费3600万元已知20XX年至20XX年的教育经费投入以相同的百分率逐年增长,则20XX年该市要投入的教育经费为万元考点: 一元二次方程的应用。专题: 增长率问题。分析: 一般用增长后的量=增长前的量(1+增长率),20XX年要投入教育经费是2500(1+x)万元,在20XX年的基础上再增长x,就是20XX年的教育经费数额,即可列出方程求解解答: 解:根据题意20XX年为2500(1+x),20XX年为2500(1+x)(1+x)则2500(1+x)(1+x)=3600,解得x=0.2或x=2.2(不合题意舍去)故这两年投入教育经费的平均增长率为20%,20
24、XX年该市要投入的教育经费为:2500(1+20%)=3000万元故答案为:3000点评: 本题考查了一元二次方程中增长率的知识增长前的量(1+年平均增长率)年数=增长后的量11(2012枣庄)已知关于x的方程x2+mx6=0的一个根为2,则这个方程的另一个根是考点: 根与系数的关系。专题: 计算题。分析: 设方程的另一根为a,由一个根为2,利用根与系数的关系求出两根之积,列出关于a的方程,求出方程的解得到a的值,即为方程的另一根解答: 解:方程x2+mx6=0的一个根为2,设另一个为a,2a=6,解得:a=3,则方程的另一根是3故答案为:3点评: 此题考查了一元二次方程根与系数的关系,一元二
25、次方程ax2+bx+c=0(a0),当b24ac0时方程有解,此时设方程的解为x1,x2,则有x1+x2=,x1x2=12(2012威海)若关于x的方程x2+(a1)x+a2=0的两根互为倒数,则a=考点: 根与系数的关系。专题: 计算题。分析: 设方程的两根分别为m与n,由m与n互为倒数得到mn=1,再由方程有解,得到根的判别式大于等于0,列出关于a的不等式,求出不等式的解集得到a的范围,然后利用根与系数的关系表示出两根之积,可得出关于a的方程,求出方程的解得到a的值即可解答: 解:设已知方程的两根分别为m,n,由题意得:m与n互为倒数,即mn=1,由方程有解,得到=b24ac=(a1)24
26、a20,解得:1a,又mn=a2,a2=1,解得:a=1(舍去)或a=1,则a=1故答案为:1点评: 此题考查了根与系数的关系,倒数的定义,以及一元二次方程解的判定,一元二次方程ax2+bx+c=0(a0),当b24ac0时,方程有解,设此时方程的解为x1和x2,则有x1+x2=,x1x2=13(2012日照)已知x1、x2是方程2x2+14x16=0的两实数根,那么的值为考点: 根与系数的关系。分析: 利用一元二次方程根与系数的关系求得x1+x2=7,x1x2=8;然后将所求的代数式转化为含有x1+x2、x1x2形式,并将其代入求值即可解答: 解:x1、x2是方程2x2+14x16=0的两实
27、数根,根据韦达定理知,x1+x2=7,x1x2=8,=故答案是:点评: 此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法三、解答题14(2012菏泽)解方程:(x+1)(x-1)+2(x+3)=814解:原方程可化为 x2+2x-3=0(x+3)(x-1)=0,x1=-3,x2=115(2012滨州)滨州市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?学习以下解答过程,并完成填空解:设应邀请x支球队参赛,则每对共打场比赛,比赛总场数用代数式表示为根据题意,可列出方程整理,得解这个方程,得
28、合乎实际意义的解为答:应邀请支球队参赛15解:设应邀请x支球队参赛,则每对共打(x-1)场比赛,比赛总场数用代数式表示为x(x-1)根据题意,可列出方程x(x-1)=28整理,得x2-x=28,解这个方程,得 x1=8,x2=-7合乎实际意义的解为 x=8答:应邀请 8支球队参赛故答案为:(x-1;x(x-1); x(x-1)=28; x2-x=28;x1=8,x2=-7;x=8;816(2012济宁)一学校为了绿化校园环境,向某园林公司购买力一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树
29、苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?16解:因为60棵树苗售价为120元60=7200元8800元,所以该校购买树苗超过60棵,设该校共购买了x棵树苗,由题意得:x120-0.5(x-60)=8800,解得:x1=220,x2=80当x2=220时,120-0.5(220-60)=40100,x1=220(不合题意,舍去);当x2=80时,120-0.5(80-60)=110100,x=80,答:该校共购买了80棵树苗【备考真题过关】一、选择题1(2012乌鲁木齐)关于x的一元二次方程(a-1)x2+x+|a|-1=0的一个根是0,则实数a的值为()A-1B0C1D-1或11A1解:把x=0代入方程得:|a|-1=0,a=1,a-10,a=-1故选A2(2012荆门)用配方法解关于x的一元二次方程x2-2x-3=0,配方后的方程可以是()A(x-1)2=4 B(x+1)2=4 C(x-1)2=16 D(x+1)2=162
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1