ImageVerifierCode 换一换
格式:DOCX , 页数:25 ,大小:2.85MB ,
资源ID:24050972      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/24050972.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(LSTM+CTC详解.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

LSTM+CTC详解.docx

1、LSTM+CTC详解LSTM+CTC详解随着智能硬件的普及,语音交互请求会越来越多。2011年之后,深度学习技术引入到语音识别之后,大家也一直再问一个问题,深度学习技术还能像刚提出时候那样,持续大幅度提升现在的语音识别技术吗?语音技术能够从小规模的使用转向全面产业化成熟吗?如果全面产业化成熟,意味着会有越来越多的语音处理需求,但XX语音技术部的负责人贾磊说,如果线上50%的搜索都由语音完成,而机器耗费还和过去一样,那么没有公司能承担起这样的机器耗费。语音搜索的未来会怎样?技术能持续发展吗?技术的发展能否优化成本结构,同时又保障用户体验?贾磊演讲全文【贾磊】我简单介绍一下长短时记忆模型。这个模型

2、的优势就在于,在传统的网络中引入三个门:输入门,输出门和遗忘门,分别代表对信息长期、远期和近期的记忆和控制。相对于我们传统的CNN和DNN模型,它的好处是能够记录轨迹的变化。这个模型已经提出来很久了,本身并不是近期的创新,但要把它应用在工业里,是有很多困难和现实问题的。为了把模型应用在产品上,我们提出了一套CNN+7DNN+2LSTM的结构。我当时提出这个结构,是专门在西北工业大学汇报过的,Google当时没有论文。Google 当初提出2层LSTM,在我们的验证中,如果是对于状态建模,那么需要比较 Deep的模型,因为这是比较短的瞬时状态,它的轨迹并不清晰。那么如果采取这种深层结构,两三轮的

3、迭代,数据就可以获得收敛,有很好的这个效果。而如果只用2层的LSTM,随着数据量的增加,这个提升会很慢。而且最终的收益,这个模型的效果好。Google 最后的论文也证明了这一点,这样的模型结构,对于状态建模是比较好的。然后我们在LSTM的模型上,主要解决了海量数据的训练和效率问题。因为LSTM不是今天的重点,今天主要讲CTC,和语音识别对传统框架的改变。因此我就跳过这一部分。LSTM的训练是有困难的,因为很容易发散。这是一个重要的技术,Google提出的LSTMP,它在传统的LSTM模型之上,引入了一个反馈层。这个反馈层对工业界弥足珍贵,因为这个反馈层会使运算的计算量大幅下降,它可以把反馈的,

4、比如说你这个神经元节点是1024,他反馈的可以采用256,这样整个计算量会大幅压缩。因此我向大家推荐这个技术,基本上应该是工业界和学术界的最新技术,除了产品效果之外,这个的精度更高,我对这个的猜想是因为LSTM的输出层很大,它有两万多个节点,在状态建模的时候。因此为了和外部的匹配,通常的就是C代表的LSTM的记忆单元,这个单元的维度会比较高,一般采用的是1024,也可以采用2048。当采用1024的时候,其实整个网络已经非常复杂了。这个属于反馈层,可以把参数大幅的压低,从而导致你可以鲁棒稳定的去训练这个网络。那么有人反映,带有反馈层之后训练会不稳定。我的感觉是这种反馈即使有不稳定,大家要去钻研

5、,因为它是必不可少的。工业产品中如果不带这个反馈,计算量是难以承受的。这是 Google 对 LSTM 的贡献,我向大家推荐这个技术。然后讲BPTT算法,BPTT算法是最基本的训练神经网络的算法,就是误差反向传播。对于R模型或者LSTM模型它是有轨迹的,因此它是根据轨迹的误差反向传播。它有两种方法。第一种方法是逐帧递推的,一帧推下一帧,再下一帧误差规避以后再向前传。第二种是所有的误差同步向前传,传固定的步数。这两种算法其实在BPTT的理论都是存在的。后面这种实际上就是把误差截断,不让误差从头传到尾。第一种就是直接从头传到尾。两种基本的算法,大家可以了解一下基本的理论。这是我们多层的LSTM的结

6、构,下面是我们的CNN层,上面是我们的DNN全连接层,这是我们的LSTM两层。这个节点是采用了1024,这个维数的大小,线上的工业产品是可以用的。所以大家的研究可以照着这个去做,如果你的体积过大或者过小,对于工业而言可能就是研究跟现实之间就会有不匹配。这解释了网络能够提升系统的根本原因:第一,多层结构对神经网络而言总是有价值的,因为多层意味着输入的扰动在输出总数会衰减。这个我觉得微软的于老师是有一篇论文去讲这个。第二个状态建模,状态的轨迹并不是很清晰,很短、很sharp的一个建模单元。这个时候如果完全采用LSTM去建模的话,造成的结果就是LSTM是轨迹比较强,但是它跟瞬态的模拟能力不够,因此结

7、合瞬态跟轨迹这样的一个模型结构,在我们现实产品中发现是稳定的,而且总是有好的效果。那我们和双层的LSTM做对比,谷歌当年刚开始提出双层的LSTM胜过CNN,有这样一篇论文,大家可以去找,我们做了实验,实际上我们达到的是negative的结果。在2000小时中,跟谷歌的实验一样,对等。双层LSTM的效果胜过了传统的CNN技术。但如果把数据量增加到一万小时的时候,这种十层的CNN会胜过双层的LSTM,节点是1024,大家可以做实验看看。因为LSTM的特点是节点多,记忆能力就强,但是节点如果少的话,能力就有限。1024是工业能上线的技术指标,我们把LSTM变成这种结构的时候,我们很好的胜出了DNN和

8、CNN。这是我们当年从事这个研究的一段历史,那么谷歌最后的论文也证明了这一点,所以我相信这个应该是目前大家都没有异议的东西。那么训练方法,其实这个东西早就存在了,十年以前也有,现在也没有什么太大的改变。实际上训练的方法是对这个理论,正确的在产品中使用的根本的影响。谷歌有一个很著名的训练,我觉得是这个训练把LSTM带入语音工业界了,因为LSTM很慢,逐帧的训练基本上是在现实中是不可能的。那么谷歌做了一个方法,首先把句子随便的排在一起,每一次取一个SubseqSize(子句),这个子句会有一个 Batchsize,64个句子放在一起,子句是20。这样的一个方法,就是把LSTM的训练,我们知道传统的

9、LSTM是轨迹训练,而我们的CNN是逐帧训练,把LSTM向逐帧训练靠拢。这样核心收益就是,CPU在计算的时候是可以高速计算和高速并行的。由于这个技术的引入,把LSTM的训练速度大大提升,从而工业界可以使用LSTM做语音识别。那我们的训练结构基本上就是一种多GPU的方案,我们把这个句子划分成多个机器,每一个机器都采用一种分子句训练,得到的结果,然后用单机同步,或者异步SGD。后面我会讲我们多机训练的算法,总之把这个数据去搞定。这个训练算法,我认为单机也是可以做的,大家的高效就是用谷歌的分子句训练,不需要很多的GPU,一个GPU就能训练LSTM,而且效果很好。那这是我们最新研究的整句训练的方法,整

10、句训练的难度会非常大,因为单帧递推的话,一般都是两三个句子,误差都会从头推到尾,从尾推到头。这个训练量会非常的大。而这个是我们认为后续提升的关键,谷歌的分子句训练在我们的实验中无法做CTC的Training。那整个的训练要全部切到整句训练上,这个跟传统的训练方法就会有一个很大的差异,这个差异是造成CTC训练在语音识别中使用的核心瓶颈。然后我们的并行训练平台,当年的CNN,DNN和LSTM,我指的是分子句的LSTM都可以单机去训练,大家在高校里都可以去做。但是做这种训练的时候,单机已经很难完成任务了,我基本上都使用多机,一般是这样的一个机器的结构。那么这是一个数状结构,是把模型去平均,数状是让模

11、型传递的时候归并更加容易。这是一种新型拓扑结构,用于异步SGD,用多机去做,我们大概是四到八个机器,一个机器有四个GPU卡,因为单机的速度实在慢到无法忍受。这个工作就是说,我们的下面的工作,训练量是谷歌的数据量的四到五倍,我用模型体积是谷歌的五到二十倍。那这是我们工作的一个重要的核心价值,因为当LSTM做CTC训练的时候,整句的训练会差巨大的一个技术瓶颈。谷歌的模型很小,双向的模型只有300个节点,单向的模型只有500个节点。我们双向的模型用到了1560的节点,我们单向的模型用到了2048个节点,这样的规模是适合工业界去大量产品使用的。这里我插一句,不是说数据小了就不能做研究,也不是说节点少了

12、这个实验就做不了,而是工业节点使用的时候一定要考虑未来的训练语料库是十万小时,如果你做了一个算法,你只能做一万小时,或者是五千小时的训练,那这个算法长期去看是没有工业生存价值的,这是我们工业界思考的一个根本和立场。所以,这个工作难度的核心就在于训练速度的提升,这个速度的提升是超乎我们常人想象的。因为当年CNN和DNN技术,我觉得于老师和邓老师把这个DNN做起来一个核心的原因是GPU带来的计算量的提升,因为GPU本质上改变了CPU,提升大量的并行度,所以LSTM算法得以流行。而如果CTC如果想训练的话,一定要有整句训练,而整句训练的训练速度是会造成所有人的技术难题的。而这种难题在工业界中实际上尤

13、为突出,因为我们的训练量太大。而且在学术界,实际上我们探讨一些理论结果,不一定是要大数据,后面我会有一些理论的创新,今天得到的结果不仅仅是说我们工业界就是拿程序跑数据,大数据下宣布一个吓人的理论,它是有理论意义的。然后我开始进入CTC的讲解和介绍,首先我介绍一下静态分类。静态分类就是橘子,菠萝,还有桃子,其实你做这种分类很简单,是一个分类器。CNN和DNN就是简单的静态分类器,当我们去训练LSTM的时候,大家可以回忆一下。采用谷歌的分子句训练,实际上大家也是模拟单个的状态,在每一个子句中间我们可能有误差和递推。但是实际上它是一个静态建模,建模的目的就是模拟输出状态。而序列分类就不一样,他是直接

14、把一个序列映射到另一个序列,从头到尾的去做训练。而这种序列训练的建模理论和基础和我们传统的语音识别差异很大,它本质上并不是静态分类器,它是动态分类器。语音识别要想实现动态分类,语音识别本质上是训练DNN模型、CNN模型,甚至你训练LSTM,多多少少都有静态分类的影子。而CTC训练是真正的序列训练,优化整个序列的损失,而不是优化单点的损失。那在展开训练之前,我想再对比一下CTC训练跟传统语音训练HMM训练的不同。那HMM训练是有这样一个拓扑结构,这个输出分布换成GMM或者是换成DNN,这样的分布,大家建模的时候实际上拓扑是固定了,大家只是训练这部分,这部分东西。我们先得到一个模型初值,切分出边界

15、,在固定边界的学习下,把GMM和DNN模型调到最优,这是我们传统的一个学习分量方法。虽然我们实现了动态训练分类,但是我们的训练和本质上是静态分类器,我们没有做动态分类器的动态直接训练。但是CTC训练不同,CTC是直接的动态序列学习,它是要优化整个序列的可能性,什么叫整个序列的可能性?比如说话ABC是一个序列,那么Blank空白AAB Blank CC,这叫ABC,对应的全叫ABC。任何一种序列可能的展开,都是这个序列的实例。它并没有固定的边界,那引入了一个重要的空白模型。空白模型是无意义的,就是没有任何的物理意义,这个模型就是硬引入来的。对应的这个模型拓扑结构,从上面这个模型转成下面这个模型,

16、大家注意这个模型的拓扑,首先Blank空白是可以跨越的,大家可以是越过空白的。但是也可以经过空白,黑点表示实际的ABC观测,是不可跨越的。可以多帧注流,但是不可以跨越。空白也可以多帧注流,这是CTC理论模型,实际上非常可贵,CTC模型的拓扑结构是这样的。空白是无限延展的,这些有意义的标签分布只有一帧,这是非常重要的CTC的性质。你模型越好你越近于这个性能,而且CTC模型是否训练成功,就依赖于这个拓扑是不是和语音一致。而当这个语音识别的标签变为一帧的时候,它的价值在解码时会有巨大的收益。解码器是语音识别中最复杂的技术模块,而且它是复杂的逻辑运作,意味着没法加速,而只能顺着 if-else 的路径

17、去拓展,整个就是动态规划。而如果能把解码速度大大压缩,剩下就是DNN的计算量了。DNN是好办的,它是规整的,有固定的计算规律,而且有很多专业硬件,可以加速和提升。我觉得这就是语音识别的未来,线上如果50%的搜索都由语音完成,如果机器耗费还和今天一样,没有人能承担起这样的机器耗费。所以这个技术对于语音识别的未来弥足珍贵。那这个模型好不好,能不能在精度上超越我们现实的语音世界?我再解释一下CTC的实际训练情况,刚开始的路径首先是空白,按照刚才的拓扑结构,空白可以经过,也可以跳跃。空白也可以多帧注流,可以跳向有意义的实际建模单元,建模单元也可以跳过空白到下一个。整个的空间展开是固定序列约束的解码。什

18、么叫固定序列,我知道我的目标序列是ABCDE,我把ABCDE整个空间在这个模型的拓扑结构上全部去展开。这是我觉得只要大家是传统做语音识别的,全部是这样的思路。所以当机器学习的人最初提出CTC的时候,很少有语音识别的人去追求,甚至到现在很多人,包括我在9月份的interspeech开会,谷歌的学者讲CTC的时候,底下很多人尤其是传统语音识别的人是不信的。因为这东西在传统的语音识别框架中完全存在,我们也完全能做这个事情,这个东西能有提升吗?其实大家都是不相信的。包括谷歌的实验结果,谷歌实验结果有一些前后矛盾的地方,它得到的提升不足10%。而状态判断系统的很低,就是一个双重的S型状态。谷歌并没有给出

19、原因,为什么CTC能提升。那然后讲一讲CTC的函数优化,CTC是优化整个无空间序列,这跟我们的图空间是一样的。但是有一点不一样的,CTC并不是全局Normalise,CTC是在逐帧Normalise打分。CTC不可能和GMM融合,而必须用轨迹建模,这就要用RNN、LSTM进行轨迹建模。CTC训练必须采用整句训练,综合考虑全局的上下文信息,力求全局对比。然后我们讲空白,CTC模型有两个伟大之处。第一个伟大之处是全局Global,这个东西我们报告有。第二个是空白,CTC有特殊的空白模型,我们语音识别有SP,我们有长境义和短境义,我们短境义也有,那它那个空白跟我们的空白有什么差别。那我可以讲一下,引

20、入blank的类别,它的作用主要是较好的解决两个建模单元之间的混淆性。比如说这是两个建模单元的边界,边界的地方我们是切分切出一个边界,这个边界似是而非,说属于前面也行,说属于后面也行,讲不清楚。这种情况下,CTC模型的空白可以吸收这个边界,对于我们的疑问是,我们的SP模型是不是也能干这个事情。对应的第二个,将传统的轨迹学习转为差异化学习。CTC的模型结果,一定是当前的建模单元只有一个脉冲信号。我并不是在描述轨迹变化过程,我是在描述差异性。哪一帧信号最能代替这个因素,这是CTC训练的理念实质。还有CTC训练天然解决了语音和非语音的区别,他们的区分性不是那么重要了,因为CTC已经搞定了。当你在区分

21、训练的时候,更重要的是区分语音之间的混淆性。这一点实际上是通过一帧信号来代替一个观测量,你说R这个因素可能维持时间很长,但是代表的特征只有一帧信号。然后讲一下CTC实际的前后项算法的特性,这个热力图代表的是误差分布函数,这是从前到后的误差分布,这是从后到前的误差分布,这是两个合到一起的误差分布。这个热力图反映了什么,CTC这个误差从前向后的时候误差非常集中,说明从前向后说对这个声音的确定性很高。但是从后向前的时候,声音迅速分散,代表声音的不确定性很高。这说明在语音识别中,从左向右对语音识别的结果贡献更大,从右向左有价值,但并非很重要。这意味着,我们可能做单向的LSTM模型,不需要右边的文本,也

22、许可以精确建模。而只有单向的LSTM模型才是工业产品可以接受的,因为它没有延迟,可以在线去解码。那么这个理论的分析结果,是在做之前实际上我们就想探寻的。如果后向Dominate了这个Process,那CTC的训练必须依赖右边的信息,否则的话整个语音识别是没有办法,整个的CTC训练是没有办法很好的收敛的。但是很有幸,左边Dominate,右边有价值。CTC的解码过程,实际上CTC的空白占了绝对的优势,我给大家只是找到了一个简单的例子。比如说我们建模“简单可依赖”,那我们就简单每一个字去建模,blank可以无限延展,最后的解码路径就是这样的一个路径。每一个字只有一帧,无论你是什么样的建模单元只有一

23、帧。那这样的解码结果,在解码的时候会有很多优势,我们会有一个解码的算法加速。然后CTC训练了尖峰生成,大家用机器学习直接做CTC训练,就是从一个裸的模型就硬做,可以做到。我见过很好的结果。而且做的过程,我们用一个概念叫拉尖峰,这个尖峰是一点点拉出来的,刚开始这个锯子什么也没有,“简单可依赖”的几个字,可能拉出来一个简单可可出来了,然后逐渐的拉紧,就把简单可依赖尖峰生成。那么对应的右边是误差的降低,刚开始的误差很大,逐渐误差会降低,这就是CTC训练的优化过程。那么CTC有两个问题,第一,CTC能够提高人类对于语音的辨识能力吗,这个实际上是一种能力,这种算法是不是超越了现在所有的。第二个CTC能提

24、供能提供工业产品的识别率吗?这个是有差异的。比如说第一种方法我可以采用双向的建模,我可以采用多面的解码,反正我就无休止的做,我拿到最好的结果,我跟人去PK。第二个结果是指工业产品有设定的要求,有机在线解码的很多的需求,不能让用户无偿的等待,以及计算机计算资源的消耗,必须满足产品要求,那实际上这是两个问题。那么我主要想对比一下HMM,DNN和CTC的差异。第一是模型结构差异,CTC引入了blank,我们实际上是有SP的,但是我姑且把它命名为差异。第二个CTC训练无须固定边界,对CTC而言是不需要的,裸的模型随便给我一个序列我可以做,自动的end to end 优化模型参数,这是他对应的两个,这是

25、传统我们的CE训练,我们必须知道这个label,根据label算出误差去优化网络,那上面这个模型训练实际上就是CTC的模型。那我们做CTC整个training的过程,我不是去拉尖峰,我是按照压尖峰的模式,我的尖峰都是往下压的。我的训练过程实际上是这样一个过程,首先出来两个空白,空白长大一点,空白又长大一点,空白再长大一点,最后留下来了一个尖峰,这是我的训练过程。我所有的训练都是采用这种训练模式,推荐给大家,大家可以选择,希望大家可以提出比我更好的训练方法。CTC训练的区分度是非常关键的,区分度我用美国微软研究院的,当年是我的老板Jeff的话说这是艺术。区分度训练不是技术,很少有人能做的很好。这

26、个东西全部是要通过各种细节去调节,全部运用参数去做。但它是语音识别领域对人工智能的重要贡献,这一点我永远引以为傲。在所有的机器学习理论中没有区分度训练,我认为区分度训练才是真正的end to end的学习。他直接得到解码结果,根据解码错误反馈来修正误差。CTC的区分度跟传统的区分度没有差别,这里有两个重要的,一个是深度学习网络内部的梯度,一个是解码的区分度信息,这两个实际上是在一起的。然后我们可以在做CTC模型的时候,我可以对CTC模型维特比得到固定边界,这一点我们就是我们是这样做,大家也可以不这样做。这个实际上就已经进入了传统语音识别的领域了,我有一个模型,我做一次切分,哪一个最大,哪一个定

27、一些边界。得到固定边界之后,我们就可以进行区分度,这个过程跟传统的区分度一模一样,但是空白对CTC很关键,需要去做。然后异步SGD的优化,我这个训练是采用异步SGD去做,我是属于一边解码一边update 模型,我两个是一同去做的。区分度训练CTC模型的收益和我的固定边界的模型是相当的,所以这一点是非常可贵的,这是我们区分度的结果,我们都有所有的实验。然后我要讲的是CTC的解码,那CTC技术的解码,实际上跟传统的解码是有一定差异的,第一在图状态空间构建的时候,每一个原来的你的一个建模单元,我们都是采用单状态。原来的一个因素必须是三状态,这是传统的状态建模,CTC是单状态的。同时要增加一个可跳转的

28、空白。解码的那个图空间构件基本元素就是这样的拓扑,CTC的解码很快,从两倍实施,把DNN打出来的结果固定,只是去算解码的时间。两倍的时速很慢,我把时间放的非常快,缩短到0.15倍实施,识别率没有任何降低。而缩短到0.05倍实施,识别率只降到0.2。这说明什么?这说明语音识别的解码器的耗费全部转化为DNN的计算了。而语音识别解码器,一个机器,一个现有的PC器可以handle更多的解码,因为它的解码速度很快,lost很低,这使语音识别未来的发展具有很大的工业的价值。因为现在的语音识别cost很高,你支持一核,一线的服务这个是很花机器的,如果50%用语音搜索这个事搞不定的。但是如果这样去做,我们把语

29、音识别的解码速度大幅的提升,如果计算量全是DNN的话,那是跟容易办的。DNN我相信一定会有大量的专业硬件去做DNN的计算,据我了解很多公司都在做这样的研究,这个东西是一定可以解决的。所以这样的话,语音识别未来是可能的,就是大面积的语音识别的采用是可能的。然后我们可以把我们的解码的算法告诉给大家,让其他的东西你们找不到,其实很简单,在解码有空白段的时间,这个search的beam值是动态的自适应调节的,如果你确定当天是空白,这个beam可以大幅度的去削减,这样解码的速度就会很快。然后讲我们的基线系统,因为只有你知道我们做了什么基线系统,你们才知道我们这个工作是不是有价值。那么谷歌当时在inter

30、 speech的会议上,被微软当时一个学者问他的结果,最后谷歌的结果有点不一致,因为它的基线很低,它的基线就是一个两层的LSTM。而我们的基线,状态是两万的状态序列,参数是这样的参数结构,DNN的节点都是2000个。LSTM的系数是1024,反馈是512。这个模型非常的大,这是我们的商业系统,我们就在这样一个商业系统。然后训练数据量我们用了将近一万小时,并非觉得大数据就很重要,只是这个技术的核心难点就在于训练速度,如果我们不能证明我们的算法可以用于十万小时,那这个技术做的是没有意义的。所以相比谷歌,他们是用2000小时去做,而且模型小了很多,我们的模型很大。然后我们用的优化准则实际上是这个系统

31、,是单机同步训练。训练方法是传统的谷歌分子句。那谷歌分子句的训练方法实际上是被证明非常有效的,那么原模型大概就是几十个G左右,然后我们做这个试验的时候,要求12和实现的解码速度达到0.5,就totally的解码速度,因为代表一个工业的基础要求,因为我们做一个事情总要知道它的解码速度是多少、LOST是多少,这个是我们解码速度问题。我们把我们的基础系统完全地交给大家),大家知道我们这个工作,跟什么做比较,这是我们的试验,我们几乎做了我们能做的所有的实验。首先状态实验,状态实验首先基本模型是这个模型,我们不知道拓扑是不是有价值,于是我们就引入拓扑。我们也不知道是切分有价值还是交替,是切分的作用还是交

32、替训练的作用。然后双向的时候,也做了类似的工作,那么对音节或者整个汉字建模我们也做了很多的模型,那我们这个模型的情况呢,首先整个音节建模CNN我们做,然后音节用的是5层的LSTM建模,1560节点,这个模型很大,双向的。整个就是用,这样做的目的我们就是想看一看,在音节模型上,这个算法的形成到底怎么弄。其实,对于CTC而言,从理论上它不存在任何建模的困难,这是bulitable 的技术,在我的研究中我发现,就是任意的虚点,无论你的建模单元有没有意义,无论它有没有区分性,只要你给我足够的数据、足够大的模型,我一定可以训练出很好的结果。所以在音节实验中,我的模型取的偏大,那如果更大,又会不一样,那实际上我也有一些尝试,这个实验结果就不讲了。而对声韵母建模,我们标准采用的是我们产品中可以采用的策略。首先,这样文本的声韵母12000个,然后CNN+DNN是9层2048节点,这是标准的CNN模型的配制。然后是CNN加5层LSTM 1024节点,还有2048节点,还有1024的结果。那么,这个结果是有区分度结果,因为这个结果和这个结果可以比,因为它的模型参数是一样的

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1