1、小学至初中数学所有公式小学至初中数学所有公式给自己找点辅导孩子的东西,估计来空间的朋友有的也能用上,好东西大家分享 小学至初中数学所有公式1、 每份数份数总数 ;总数每份数份数总数份数每份数2、 1倍数倍数几倍数 几倍数1倍数倍数几倍数倍数1倍数3、 速度时间路程 路程速度时间 路程时间速度4、 单价数量总价 总价单价数量 总价数量单价 5、 工作效率工作时间工作总量 工作总量工作效率工作时间工作总量 工作时间工作效率6、 加数加数和 和一个加数另一个加数 7、 被减数减数差 被减数差减数 差减数被减数8、 因数因数积 积一个因数另一个因数9、 被除数除数商 被除数商除数 商除数被除数小学数学
2、图形计算公式 1、正方形:C周长 S面积 a边长 周长边长4 C=4a 面积=边长边长 S=aa 2、正方体:V:体积 a:棱长 表面积=棱长棱长6S表=aa6 体积=棱长棱长棱长 V=aaa 3、长方形 C周长 S面积 a边长 周长=(长+宽)2 C=2(a+b) 面积=长宽 S=ab 4、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长宽+长高+宽高)2 S=2(ab+ah+bh) (2)体积=长宽高 V=abh 5、三角形s面积 a底 h高 面积=底高2 s=ah2 三角形高=面积 2底 三角形底=面积 2高 6、平行四边形:s面积 a底 h高 面积=底高 s=ah
3、 7、梯形:s面积 a上底 b下底 h高 面积=(上底+下底)高2 s=(a+b) h2 8 圆形:S面积 C周长 d=直径 r=半径 (1)周长=直径=2半径 C=d=2r (2)面积=半径半径9、圆柱体:v体积 h:高 s底面积 r底面半径 c底面周长 (1)侧面积=底面周长高(2)表面积=侧面积+底面积2 (3)体积=底面积高 (4)体积侧面积2半径 10、圆锥体:v体积 h高 s底面积 r底面半径 体积=底面积高3 总数总份数平均数和差问题的公式 (和差)2大数 (和差)2小数 和倍问题 和(倍数1)小数 小数倍数大数 (或者 和小数大数) 差倍问题 差(倍数1)小数 小数倍数大数 (
4、或 小数差大数) 植树问题1、非封闭线路上的植树问题主要可分为以下三种情形: 如果在非封闭线路的两端都要植树,那么:株数段数1全长株距1 全长株距(株数1) 株距全长(株数1) 如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数段数全长株距 全长株距株数 株距全长株数 如果在非封闭线路的两端都不要植树,那么: 株数段数1全长株距1 全长株距(株数1)株距全长(株数1) 2、封闭线路上的植树问题的数量关系如下 株数段数全长株距 全长株距株数 株距全长株数盈亏问题 (盈亏)两次分配量之差参加分配的份数 (大盈小盈)两次分配量之差参加分配的份数 (大亏小亏)两次分配量之差参加分配的份数 相遇
5、问题 相遇路程速度和相遇时间 相遇时间相遇路程速度和 速度和相遇路程相遇时间 追及问题 追及距离速度差追及时间追及时间追及距离速度差 速度差追及距离追及时间 流水问题 顺流速度静水速度水流速度逆流速度静水速度水流速度 静水速度(顺流速度逆流速度)2 水流速度(顺流速度逆流速度)2浓度问题 溶质的重量溶剂的重量溶液的重量 溶质的重量溶液的重量100%浓度 溶液的重量浓度溶质的重量 溶质的重量浓度溶液的重量 利润与折扣问题利润售出价成本 利润率利润成本100%(售出价成本1)100% 涨跌金额本金涨跌百分比 折扣实际售价原售价100%(折扣1) 利息本金利率时间 税后利息本金利率时间(120%)
6、长度单位换算 1千米=1000米 1米=10分米1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算1立方米=1000立方分米 1立方分米=1000立方厘米1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算 1元=10角 1角=10分 1元=100分 时间单位换算 1世纪=100年 1年=12月 大月(31天)有:135781012月
7、小月(30天)的有:46911月 平年 2月28天, 闰年 2月29天 平年全年365天, 闰年全年366天 1日=24小时 1小时=60分 1分=60秒 1小时=3600秒小学数学几何形体周长 面积 体积计算公式 1、长方形的周长=(长+宽)2 C=(a+b)2 2、正方形的周长=边长4 C=4a3、长方形的面积=长宽 S=ab 4、正方形的面积=边长边长 S=a.a= a 5、三角形的面积=底高2 S=ah26、平行四边形的面积=底高 S=ah 7、梯形的面积=(上底+下底)高2 S=(ab)h28、直径=半径2 d=2r 半径=直径2 r= d2 9、圆的周长=圆周率直径=圆周率半径2
8、c=d =2r10、圆的面积=圆周率半径半径 常见的初中数学公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第
9、三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180 18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL)有斜边
10、和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对 的边也相等(等角对等边) 35 推论1 三个角都相等的三
11、角形是等边三角形 36 推论2 有一个角等于60的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理 1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平 分线 44 定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,
12、那 么交点在对称轴上 45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方, 即a2+b2=c2 47 勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2 ,那 么这个三角形是直角三角形 48 定理 四边形的内角和等于360 49 四边形的外角和等于360 50 多边形内角和定理 n边形的内角的和等于(n-2)180 51 推论 任意多边的外角和等于360 52 平行四边形性质定理 1 平行四边形的对角相等 53 平行四边形性质定理 2 平行四边形的对边相等 54 推论
13、夹在两条平行线间的平行线段相等 55 平行四边形性质定理 3 平行四边形的对角线互相平分 56 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形 57 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形 58 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形 59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形 60 矩形性质定理 1 矩形的四个角都是直角61 矩形性质定理 2 矩形的对角线相等62 矩形判定定理 1 有三个角是直角的四边形是矩形 63 矩形判定定理 2 对角线相等的平行四边形是矩形64 菱形性质定理 1 菱形的四条边都相等 65
14、菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66 菱形面积=对角线乘积的一半,即S=(ab)267 菱形判定定理 1 四边都相等的四边形是菱形 68 菱形判定定理 2 对角线互相垂直的平行四边形是菱形 69 正方形性质定理 1 正方形的四个角都是直角,四条边都相等 70 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对 角线平分一组对角 71 定理 1 关于中心对称的两个图形是全等的 72 定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对 称中心平分 73 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那 么这
15、两个图形关于这一点对称 74 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75 等腰梯形的两条对角线相等 76 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77 对角线相等的梯形是等腰梯形 78 平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么 在其他直线上截得的线段也相等79 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L= (a+b)
16、2 S=Lh 83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d 84 (2)合比性质 如果ab=cd,那么(ab)b=(cd)d 85 (3)等比性质 如果ab=cd=mn(b+d+n0),那么(a+c+m) (b+d+n)=ab 86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成 比例,那么这条直线平行于三角形的第三边 89 平行于三角形的一边,并且和其他两边相交的
17、直线,所截得的三角形的三边 与原三角形三边对应成比例 90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构 成的三角形与原三角形相似 91 相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理 2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理 3 三边对应成比例,两三角形相似(SSS)95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边 和一条直角边对应成比例,那么这两个直角三角形相似 96 性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线
18、的比都 等于相似比 97 性质定理 2 相似三角形周长的比等于相似比 98 性质定理 3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值 100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角 的正切值101 圆是定点的距离等于定长的点的集合 102 圆的内部可以看作是圆心的距离小于半径的点的集合 103 圆的外部可以看作是圆心的距离大于半径的点的集合 104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106 和已知线段两个端点的距离相等的点的轨迹,是着条
19、线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线 108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一 条直线109 定理 不在同一直线上的三点确定一个圆。 110 垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111 推论 1平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112 推论2 圆的两条平行弦所夹的弧相等 113 圆是以圆心为对称中心的中心对称图形 114 定理 在同圆或等圆中,相等的圆心角所对的弧相等,
20、所对的弦相等,所对的弦的弦心距相等115 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距 中有一组量相等那么它们所对应的其余各组量都相等116 定理 一条弧所对的圆周角等于它所对的圆心角的一半 117 推论 1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对 的弧也相等 118 推论 2 半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径 119 、推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121 、直线L和O相交 dr直线L和O相切 d=r 直线
21、L和O相离 dr122 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线123 切线的性质定理 圆的切线垂直于经过切点的半径124 推论 1 经过圆心且垂直于切线的直线必经过切点125 推论 2 经过切点且垂直于切线的直线必经过圆心126 切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127 圆的外切四边形的两组对边的和相等128 弦切角定理 弦切角等于它所夹的弧对的圆周角129 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等131 推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133 推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线 段长的积相等134 如果两个圆相切,那么切点一定在连心线上 135 两圆外离 dR+r 两圆外
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1