ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:136.25KB ,
资源ID:23906762      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/23906762.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(光耦的选型与应用.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

光耦的选型与应用.docx

1、光耦的选型与应用光耦的选型与应用 2008-2-3 8:54:00 | By: SystemARM 4推荐光耦全称是光耦合器,英文名字是:optical coupler,英文缩写为OC,亦称光电隔离器,简称光耦。光耦的结构是什么样的?光耦隔离就是采用光耦合器进行隔离,光耦合器的结构相当于把发光二极管和光敏(三极)管封装在一起。为什么要使用光耦?发光二极管把输入的电信号转换为光信号传给光敏管转换为电信号输出,由于没有直接的电气连接,这样既耦合传输了信号,又有隔离干扰的作用。光耦爱坏吗?只要光耦合器质量好,电路参数设计合理,一般故障少见。如果系统中出现异常,使输入、输出两侧的电位差超过光耦合器所能

2、承受的电压,就会使之被击穿损坏。光耦的参数都有哪些?是什么含义?1、CTR:电流传输比2、Isolation Voltage:隔离电压3、Collector-Emitter Voltage:集电极发射极电压CTR:发光管的电流和光敏三极管的电流比的最小值隔离电压:发光管和光敏三极管的隔离电压的最小值集电极发射极电压:集电极发射极之间的耐压值的最小值光耦什么时候导通?什么时候截至?关于TLP521-1的光耦的导通的试验报告 要求:3.5v24v 认为是高电平,0v1.5v认为是低电平思路:1、0v1.5v认为是低电平,利用串接一个二极管1N4001的压降0.7V+光耦的LED的压降,吃掉1.4V

3、左右;2、24V是最高电压,不能在最高电压的时候,光耦通过的电流太大;所以选用2K的电阻;光耦工作在大概10mA的电流,可以保证稳定可靠工作n年以上;3、3.5V以上是高电平,为了尽快进入光敏三极管的饱和区,要把光耦的光敏三极管的上拉电阻加大;因此选用10K;同时要考虑到ctr最小为50;电路:1、发光管端:实验室电源(024V)-2K-1N4001-TLP521-1(1)-TLP521-1(2)-gnd12、光敏三极管:实验室电源(DC5V)-10K-TLP521-1(4)-TLP521-1(3)-gnd23、万用表直流电压挡20V万用表+ - TLP521-1(4)万用表- - TLP52

4、1-1(3)试验结果输入电源 万用表电压(V)1.3V 51.5V 4.81.7V 4.411.9V 3.582.1V 2.942.3V 1.82.5V 0.582.7V 0.22.9V 0.193.1V 0.173.3V 0.163.5V 0.165V 0.1324V 0.06思考题:光耦的CTR(电流传输比)是什么含义?思考题:1、光耦的CTR(电流传输比)是什么含义?2、CTR与上拉电阻和光耦的光敏三极管之间与饱和导通或者截至之间的关系;参考资料:TLP521-1的CTR为50(最小值);TLP521-1的长相TLP521-1的长相线性光耦原理与电路设计 【转】线性光耦原理与电路设计来源

5、:21IC中国电子网 作者:佚名1. 线形光耦介绍光隔离是一种很常用的信号隔离形式。常用光耦器件及其外围电路组成。由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果

6、。集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。模拟信号隔离的一个比较好的选择是使用线形光耦。线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。这里以HCNR200/201为例介绍2. 芯片介绍与原理说明HCNR

7、200/201的内部框图如下所示其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和K2,即K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得K1和K2相等。在后面可以看到,在合理的外围电路设计中,真正影响输出/输入比值的是二者的比值K3,线性光耦正利用这种特性才能达到满意的

8、线性度的。HCNR200和HCNR201的内部结构完全相同,差别在于一些指标上。相对于HCNR200,HCNR201提供更高的线性度。采用HCNR200/201进行隔离的一些指标如下所示:* 线性度:HCNR200:0.25%,HCNR201:0.05%;* 线性系数K3:HCNR200:15%,HCNR201:5%;* 温度系数: -65ppm/oC;* 隔离电压:1414V;* 信号带宽:直流到大于1MHz。从上面可以看出,和普通光耦一样,线性光耦真正隔离的是电流,要想真正隔离电压,需要在输出和输出处增加运算放大器等辅助电路。下面对HCNR200/201的典型电路进行分析,对电路中如何实现

9、反馈以及电流-电压、电压-电流转换进行推导与说明。3. 典型电路分析Agilent公司的HCNR200/201的手册上给出了多种实用电路,其中较为典型的一种如下图所示:图2设输入端电压为Vin,输出端电压为Vout,光耦保证的两个电流传递系数分别为K1、K2,显然,和之间的关系取决于和之间的关系。将前级运放的电路提出来看,如下图所示:设运放负端的电压为,运放输出端的电压为,在运放不饱和的情况下二者满足下面的关系:Vo=Voo-GVi (1)其中是在运放输入差模为0时的输出电压,G为运放的增益,一般比较大。忽略运放负端的输入电流,可以认为通过R1的电流为IP1,根据R1的欧姆定律得:通过R3两端

10、的电流为IF,根据欧姆定律得:其中,为光耦2脚的电压,考虑到LED导通时的电压()基本不变,这里的作为常数对待。根据光耦的特性,即 K1=IP1/IF (4)将和的表达式代入上式,可得: 上式经变形可得到:将的表达式代入(3)式可得:考虑到G特别大,则可以做以下近似:这样,输出与输入电压的关系如下:可见,在上述电路中,输出和输入成正比,并且比例系数只由K3和R1、R2确定。一般选R1=R2,达到只隔离不放大的目的。4. 辅助电路与参数确定上面的推导都是假定所有电路都是工作在线性范围内的,要想做到这一点需要对运放进行合理选型,并且确定电阻的阻值。4.1 运放选型运放可以是单电源供电或正负电源供电

11、,上面给出的是单电源供电的例子。为了能使输入范围能够从0到VCC,需要运放能够满摆幅工作,另外,运放的工作速度、压摆率不会影响整个电路的性能。TI公司的LMV321单运放电路能够满足以上要求,可以作为HCNR200/201的外围电路。4.2 阻值确定电阻的选型需要考虑运放的线性范围和线性光耦的最大工作电流IFmax。K1已知的情况下,IFmax又确定了IPD1的最大值IPD1max,这样,由于Vo的范围最小可以为0,这样,由于考虑到IFmax大有利于能量的传输,这样,一般取另外,由于工作在深度负反馈状态的运放满足虚短特性,因此,考虑IPD1的限制,这样,R2的确定可以根据所需要的放大倍数确定,

12、例如如果不需要方法,只需将R2=R1即可。另外由于光耦会产生一些高频的噪声,通常在R2处并联电容,构成低通滤波器,具体电容的值由输入频率以及噪声频率确定。4.3 参数确定实例假设确定Vcc=5V,输入在0-4V之间,输出等于输入,采用LMV321运放芯片以及上面电路,下面给出参数确定的过程。* 确定IFmax:HCNR200/201的手册上推荐器件工作的25mA左右;* 确定R3:R3=5V/25mA=200;* 确定R1:;* 确定R2:R2=R1=32K。5. 总结本文给出了线性光耦的简单介绍以及电路设计、参数选择等使用中的注意事项与参考设计,并对电路的设计方法给出相应的推导与解释,供广大

13、电子工程师参考。在通讯电路设计中,光耦是经常见到的;TLP521-1可以用到960019200;限流电阻是1K;上拉电阻是1K;6N137可以到10M;但是6N137需要按照datasheet来接它的外部电路才能达到10M的速度;6N137的内部和典型电路6N137的内部结构还有一种特殊的光耦,内部有2个发光管那么,DI+和DI-互换就无所谓了;常见之高速光藕型号常见之高速光藕型号zt经查大量资料后,总结出目前市场上常见之高速光藕型号供大家选择: 100K bit/S: 6N138、6N139、PS8703 1M bit/S: 6N135、6N136、CNW135、CNW136、PS8601、

14、PS8602、PS8701、PS9613、PS9713、CNW4502、HCPL-2503、HCPL-4502、HCPL-2530(双路)、HCPL-2531(双路) 10M bit/S: 6N137、PS9614、PS9714、PS9611、PS9715、HCPL-2601、HCPL-2611、HCPL-2630(双路)、HCPL2631(双路) 另外,台湾COSMO公司的KP7010在RL选值为300欧左右时,我根据其数据手册所载数值计算,速率可达100Kbit/S,且为6脚封装,比同级的6N138、6N139小巧,价格也较低。CTR的定义光耦合器的增益被称为晶体管输出器件的电流传输比 (

15、CTR),其定义是光电晶体管集电极电流与LED正向电流的比率(ICE/IF)。光电晶体管集电极电流与VCE有关,即集电极和发射极之间的电压。可控硅型光耦还有一种光耦是可控硅型光耦。例如:moc3063、IL420;它们的主要指标是负载能力;例如:moc3063的负载能力是100mA;IL420是300mA;光耦的部分型号产品名称型号规格性能说明光电耦合4N25晶体管输出4N25MC晶体管输出4N26晶体管输出4N27晶体管输出4N28晶体管输出4N29达林顿输出4N30达林顿输出4N31达林顿输出4N32达林顿输出4N33达林顿输出4N33MC达林顿输出4N35达林顿输出4N36晶体管输出4N

16、37晶体管输出4N38晶体管输出4N39可控硅输出6N135高速光耦晶体管输出6N136高速光耦晶体管输出6N137高速光耦晶体管输出6N138达林顿输出6N139达林顿输出MOC3020可控硅驱动输出MOC3021可控硅驱动输出MOC3023可控硅驱动输出MOC3030可控硅驱动输出MOC3040过零触发可控硅输出MOC3041过零触发可控硅输出MOC3061过零触发可控硅输出MOC3081过零触发可控硅输出TLP521-1单光耦TLP521-2双光耦TLP521-4四光耦TLP621四光耦TIL113达林顿输出TIL117TTL逻辑输出PC814单光耦PC817单光耦H11A2晶体管输出H

17、11D1高压晶体管输出H11G2电阻达林顿输出阅读全文(4840) | 回复(1) |反映问题 | 引用通告(0) | 编辑常用光耦 2008-2-3 8:57:00 | By: SystemARM 0推荐一、光电耦合器的种类较多,但在家电电路中,常见的只有4种结构: 1.第一类,为发光二极管与光电晶体管封装的光电耦合器,结构为双列直插4引脚塑封,内部电路见表一,主要用于开关电源电路中。 2.第二类,为发光二极管与光电晶体管封装的光电耦合器,主要区别引脚结构不同,结构为双列直插6引脚塑封,内部电路见表一,也用于开关电源电路中。 3.第三类,为发光二极管与光电晶体管(附基极端子)封装的光电耦合器

18、,结构为双列直插6引脚塑封,内部电路见表一,主要用于AV转换音频电路中。 4.第四类,为发光二极管与光电二极管加晶体管(附基极端子)封装的光电耦合器,结构为双列直插6引脚塑封,内部电路见表一,主要用于AV转换视频电路中。表1类别型 号内部电路第一类PC817 PC818 PC810 PC812PC502 LTV817 TLP521-1TLP621-1 ON3111 OC617PS2401-1 GIC5102 第二类TLP632 TLP532 TLP519TLP509 PC504 PC614 PC714 PS208B PS2009BPS2018 PS2019第三类TLP503 TLP508 TL

19、P531PC613 4N25 4N26 4N274N28 4N35 4N36 4N37TIL111 TIL112 TIL114TIL115 TIL116 TIL117TLP631 TLP535第四类TLP551 TLP651 TLP751PC618 PS2006B 6N1356N136二、光电耦合器的检测方法(不在路时): 1.电阻检测法(见表2) 2.加电检测法,在光电耦合器的初级,即第13类的脚间或第4类的脚间加上+5V电压,电源电流限制在35mA左右,可在+5V电源正极串一支1501/2W的限流电阻。加电用RX1K档测次级正向电阻,即第1类的脚间,即第23类的脚间,即第4类的脚间的正向电

20、阻,一般在30100之间为正常,偏差太大为损坏。测量上述引脚间的反向电阻为无穷大,如偏小则为漏电或击穿。三、光电耦合器的代换: 本类间所有型号均可直接互换,第1类与第2类可以代换,但需对应其相同引脚功能接入。第3类可以代换第12类,选择功能相同引脚接入即可,无用引脚可不接。但第12类不可以代换第3类。 例:用PC817代换TLP632时,PC817的脚对应接入TLP632的脚,PC817的脚对应接入TLP632的脚,PC817的脚对应接入TLP632的脚即可。如用4N35代TLP632时,可直接接入原TLP632的位置,4N35的不用。 表2 类别引脚第一类正向4560300K 500K反向引

21、脚第二类正向4560300K 500K反向第三类正向455022341832反向引脚第四类正向250350324545503040反向用数字万用表测量光耦传输特性简法 2008-2-3 8:57:00 | By: SystemARM 0推荐湖北 叶启明光电耦合器由发光二极管和受光三极管封装组成。如光电耦合器,采用封装,共六个引脚,、脚分别为阳、阴极,脚为空脚,、脚分别为三极管的、极。 以往用万用表测光耦时,只分别检测判断发光二极管和受光三极管的好坏,对光耦的传输性能未进行判断。这里以光耦为例,介绍一种测量光耦传输特性的方法。 判断发光二极管好坏与极性:用万用表挡测量二极管的正、负向电阻,正向电

22、阻一般为几千欧到几十千欧,反向电阻一般应为。测得电阻小的那次,红笔接的是二极管的负极。 判断受光三极管的好坏与放大倍数:将万用表开关从电阻挡拨至三极管挡,使用型插座,将孔连接脚发射极,孔连接脚集电极,孔连接脚基极,显示值即为三极管的电流放大倍数。一般通用型光耦值为一百至几百,若显示值为零或溢出为,则表明三极管短路或开路,已损坏。 光耦传输特性的测量:测试具体接线见下图,将数字万用表开关拨至二极管挡位,黑笔接发射极,红笔接集电极,脚基极悬空。这时,表内基准电压经表内二极管挡的测量电路,加到三极管的、结之间。但由于输入二极管端无光电信号而不导通,液晶显示器显示溢出符号。当输入端脚插入孔,脚插入孔的插座时,表内基准电源经表内三极管挡的测量电路,使发光二极管发光,受光三极管因光照而导通,显示值由溢出符号瞬间变到的示值。当断开脚阳极与孔的插接时,显示值瞬间从示值又回到溢出符号。不同的光耦,传输特性与效率也不相同,可选择示值稍小、显示值稳定不跳动的光耦应用。 由于表内多使用叠层电池,故给输入端二极管加电的时间不能过长,以免降低电池的使用寿命及测量精度,可采用断续接触法测量。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1