1、因式分解公式大全公式及方法大全待定系数法(因式分解)待定系数法是数学中的一种重要的解题方法, 应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分 解成某几个因式,但这几个因式中的某些系数尚未确定,这 时可以用一些字母来表示待定的系数.由于该多项式等于这 几个因式的乘积,根据多项式恒等的性质,两边对应项系数 应该相等,或取多项式中原有字母的几个特殊值,列出关于 待定系数的方程(或方程组),解出待定字母系数的值,这种 因式分解的方法叫作待定系数法.常用的因式分解公式:(才+盘)(工丰色)=F 4(厲4为)乂 +厲色(哉士二&2勿必4护肚(占)(口 4町土护=
2、时(,干曲+护)C 0-w +严4严沪丰+必I +沖)讥为正整数)汩-护=(a+b)(a 1-3ia + 1-3 - i?1-1) 为偶数)汙亠胪二)(/7-/巳+护莎阱 必口亠厅J 仇为奇数)(& + b + 巧 = / 亠 X + / + 2ab + 2bc + 2ca+ +r3 - ahe =(说 +A 4-X1 +b* + - ah-be- ea)例 1 分解因式:x2+3xy+2y2+4x+5y+3.分析由于2 2(x +3xy+2y )=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出 m和n,使问题得到解决
3、.解设2 2x +3xy+2y +4x+5y+3=(x+2y+m)(x+y+n)2 2=x +3xy+2y +(m+n)x+(m+2n)y+mn ,比较两边对应项的系数,则有 解之得m=3 n=1.所以原式=(x+2y+3)(x+y+1).说明 本题也可用 双十字相乘法,请同学们自己解一下.例 2 分解因式:x4-2x3-27x2-44x+7 .分析本题所给的是一元整系数多项式,根据前面讲过 的求根法,若原式有有理根,则只可能是土 1, 7(7的约数), 经检验,它们都不是原式的根,所以,在 有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x 2+cx+d)的形式.
4、解设原式=(x 2+ax+b)(x 2+cx+d)=x4+(a+c)x 3+(b+d+ac)x 2+(ad+bc)x+bd ,所以有由bd=7,先考虑b=1, d=7有所以 原式=(x2-7x+1)(x 2+5x+7).说明 由于因式分解的唯一性,所以对 b=-1 , d=-7等可以不加以考虑.本题如果 b=1, d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求 出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定 系数法在因式分解中也有用武之地.求根法(因式分解)我们把形如anxn+an-1xn
5、-1+a1x+aO(n为非负整数)的代数式称为关于 x的一元多项式,并用f(x) , g(x),等记号表示,如 f(x)=x2-3x+2 , g(x)=x5+x2+6,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项 式 f(x) f(1)=12-3 x我们把形如anxn+an-ixn-1+aix+ao(n为非负整数)的代数 式称为关于x的一元多项式,并用f(x) , g(x),等记号表 示,如f(x)=x 2-3x+2 , g(x)=x 5+x2+6,,当x=a时,多项式f(x)的值用f(a)表示.如对上面的 多项式f(x)2f(1)=1 -3 X 1+2=0;f(-2)=(-2
6、) 2-3 X (-2)+2=12 .若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理)若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a .根据因式定理,找出一元多项式f(x)的一次因式的关键 是求多项式f(x)的根.对于任意多项式 f(x),要求出它的 根是没有一般方法的,然而当多项式 f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有 有理根.定理2的根,则必有p是ao的纟勺数,q是an的约数.特别地, 当ao=1时,整系数多项式f(x)的整数根均为an的约数.我们根据上述定理,用求多项式的根来确定多项式的一 次因式
7、,从而对多项式进行 因式分解.例2分解因式:x3-4x 2+6x-4 .分析 这是一个整系数一元多项式,原式若有整数根,必是 -4 的约数,逐个检验 -4 的约数: 1, 2, 4,只有32f(2)=2 -4 X 2+6X 2-4=0 ,即 x=2 是原式的一个根,所以根据定理 1,原式必有因式 x-2 解法1用分组分解法,使每组都有因式 (x-2).原式 =(x 3-2x 2)-(2x 2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x 2-2x+2) 解法 2 用多项式除法,将原式除以 (x-2) ,所以原式 =(x-2)(x 2-2x+2) 说明 在上
8、述解法中,特别要注意的是多项式的有理根 一定是 -4 的约数,反之不成立,即 -4 的约数不一定是多项 式的根因此,必须对 -4 的约数逐个代入多项式进行验证例 3 分解因式: 9x4-3x 3+7x2-3x-2 分析 因为9的约数有土 1 , 3,土 9; -2的约数有土 1,为:所以,原式有因式 9x2-3x-2 .解 9x 4-3x 3+7x2-3x-2=9x4-3x 3-2x 2+9x2-3x-2=x2(9x 3-3x-2)+9x 2-3x-2=(9x2-3x-2)(x 2+1)=(3x+1)(3x-2)(x 2+1)说明 若整系数多项式有 分数根,可将所得出的含有分数的因式化为整系数
9、因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因 式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比 f(x)低一次的一元多项式,这样,我们就可以继续对 g(x)进行分解了.双十字相乘法(因式分解)分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3 .我们将上式按x降幕排列,并把y当作常数,于是上式可变形为 2x2-(5+7y)x-(22y2-35y+3) ,可
10、分解二次三项式时,我们常用 十字相乘法.对于某些二 元二次六项式(ax 2+bxy+cy 2+dx+ey+f),我们也可以用十字相 乘法分解因式.例如,分解因式2x2-7xy-22y 2-5x+35y-3 .我们将上式按 x降幕排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y 2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于 y的二次三项式,也可以用十字相乘法,分解为即-22y 2+35y-3=(2y-3)(- 11y+1) .再利用十字相乘法对关于 x 的二次三项式分解所以原式 =x+(2y-3) 2x+(-11y+1) =(x+2y-3)(2x
11、-11y+1) 上述因式分解的过程,实施了两次十字相乘法如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x 2-7xy-22y 2;(x-3)(2x+1)=2x 2-5x-3 ;(2y-3)(-11y+1)=-22y 2+35y-3 这就是所谓的 双十字相乘法 用双十字相乘法对多项式 ax2+bxy+cy 2+dx+ey+f 进行因 式分解的步骤是:(1)用十字相乘法分解 ax2+bxy+cy 2,得到一个十字相乘图(有两列 );ey,第一、dx0 来分解(2)把常数项 f 分解成两个因式填在第三列上,要求第二、第三列构成的十字交
12、叉之积的和等于原式中的第三列构成的十字交叉之积的和等于原式中的例 1 分解因式:22(1)x 2-3xy-10y 2+x+9y-2 ;(2)x 2-y 2+5x+3y+4 ;2(3)xy+y 2+x-y-2 ;2 2 2(4)6x 2- 7xy-3y 2-xz+7yz-2z 2解 (1)原式 =(x-5y+2)(x+2y-1) (2)原式 =(x+y+1)(x-y+4) (3)原式中缺 x2 项,可把这一项的系数看成原式 =(y+1)(x+y-2) 原式 =(2x-3y+z)(3x+y-2z)说明 (4) 中有三个字母,解法仍与前面的类似笔算开平方对于一个数的开方,可以不用计算机,也不用查表,
13、直 接笔算出来,下面通过一个例子来说明如何笔算开平方,对 于其它数只需模仿即可例 求 316.4841 的平方根 .第一步 , 先将被开方的数,从小数点位置向左右每隔两位用逗号,分段,如把数 316.4841 分段成 3,16.48,41. 第二步,找出第一段数字的初商,使初商的平方不超过第一段数字,而初商加 1 的平方则大于第一段数字,本例中第一 段数字为 3,初商为 1,因为 12=13. 第三步, 用第一段数字减去初商的平方, 并移下第二段数字, 组成第一余数,在本例中第一余数为 216.第四步,找出试商,使(20 x初商+试商)x试商不超过第一 余数,而【20 x初商+(试商+1)】x
14、 (试商+1)则大于第一余 数.第五步,把第一余数减去(20 x初商+试商)x试商,并移下 第三段数字,组成第二余数,本例中试商为 7,第二余数为2748.依此法继续做下去,直到移完所有的段数,若最后余 数为零,则开方运算告结束.若余数永远不为零,则只能取 某一精度的近似值.第六步,定小数点位置,平方根小数点位置应与被开方数的 小数点位置对齐.本例的算式如下:17.7$.48,41I220 X 1=20216第一余數十727189 27X720x17=3402743 第二余数十73472429“ 347X72X177= 354Q319 41-第三余数+3549 3 19 41 3549X90根
15、式的概念【方根与根式】 数a的n次方根是指求一个 数,它的n次方恰好等于a.a的n次方根记为-(n为大于1的自然数). 作为代数式,卜匕1称为根式.n称为根指数,a称为根底数.在 实数范围内,负数不能开偶次方,一个正数开偶次方有两个 方根,其绝对值相同,符号相反.【算术根】 正数的正方根称为算术根.零的算术根规定为J I零.【基本性质】 由方根的定义,有二根式运算【乘积的方根】 乘积的方根等于各因子同次方根的乘积;反过来,同次方根的乘积等于乘积的同次方根,即畅二畅奶0,b 0)【分式的方根】 分式的方根等于分子、分母同次方根相除,即芒=脅对b 0,b0)【根式的乘方】的护J 0)【根式化简】五
16、+乖(血+丽)(梟-並) 直_暫0,d 0)【同类根式及其加减运算】 根指数和根底数都相同的根式 称为同类根式,只有同类根式才可用加减运算加以合并 .囚进位制的基与数字 任一正数可表为通常意义下的有限小数或无限小数,各数字 的值与数字所在的位置有关,任何位置的数字当小数点向右 移一位时其值扩大10倍,当小数点向左移一位时其值缩小 10倍.例如173.246 = 1x10+7 xW+-FxlCrxlO-FxlO-3一般地,任一正数 a可表为二兀 x 10H 十- + +口i xW aQ+ Of_i X 10 1 + tf X 10-3 十这就是10进数,记作a(10),数10称为进位制的基,式中
17、ai在0,1,2丄,9 中取值,称为10进数的数字,显然没有理 由说进位制的基不可以取其他的数 .现在取q为任意大于1 的正整数当作进位制的基,于是就得到 q进数表示3B M-1 =1 -2(1)式中数字ai在0,1,2,,q-1 中取值,ana“1.a依。称为q进数a(q)的整数部分,记作a(q);a-1a-2 .称为a(q)的分数部分,记作a(q).常用进位制, 除10进制外,还有2进制、8进制、16进制等,其数字如 下2进制0, 18 进制 0, 1,2, 3, 4, 5, 6, 716 进制 0, 1,2, 3, 4, 5, 6, 7, 8, 9am兀3各种进位制的相互转换1q-10转
18、换 适用通常的10进数四则运算规则,根据公 式(1),可以把q进数a(q)转换为10进数表示.例如743 已曲十3二448十盟十? = 4昭问1011.10 轴=lx23 +0x22 +1x2 + 1 + 1x2l + 0x2_3+1x23二阿210q转换转换时必须分为整数部分和分数部分进行.对于整数部分其步骤是:(1)用q去除a(10),得到商和余数.(2)记下余数作为q进数的最后一个数字. 用商替换a(10)的位置重复(1)和 两步,直到商等 于零为止.对于分数部分其步骤是:(1)用 q 去乘a(10).(2)记下乘积的整数部分作为 q进数的分数部分第一个数字 用乘积的分数部分替换a(10
19、)的位置,重复(1)和 两 步,直到乘积变为整数为止,或直到所需要的位数为止 .例如:103.118(10)=147.074324(8)7.5523piq转换 通常情况下其步骤是: a(p) a(10)宀a(q).如果p,q是同一数s的不同次幂,其步骤是:a(p) a(s) a(q).例如,8进数127.653(8)转换为16进数时,由于8=23, 16=24,所以s=2,其步骤是:首先把 8进数的每个数字根据8-2转换表转换为2进数(三位一组) 127.653(8)=001 010 111.110 101 011(2)然后把2进数的所有数字从小数点起 (左和右)每四位一组分组,从16-2转换
20、表中逐个记下对应的 16进数的数字,即127 0101 011L1W1 0101 1000(1) = 57.358(10)正多边形各量换算公式n为边数 R为外接圆半径a为边长 燎为内切圆半径为圆心角S为多边形面积重心G与外接圆心0重合正多边形各量换算公式表各量正三角形n为边数 R为外接圆半径 a为边长燎为内切圆半径广_ 360八。为圆心角冲丿S为多边形面积 重心G与外接圆心O重合正多边形各量换算公式表各正三角正方形正五边形正六边正n边量形形形图形Z* 130n yS4込4屁a22疋2込22启FJ?3 sin G2nr tan 2-710-252R22? sin 2R3盘21io十Maa2ain
21、 2r鱼61 a2,5 + 2752a a c)t 2 2或许你还对作图感兴趣:正多边形作图所谓初等几何作图问题, 是指使用无刻度的直尺和圆规来作图.若使用尺规有限次能作出几何图形,则称为作图可能,或者说欧几里得作图法是可能的, 否则称为作图不可能很多平面图形可以用直尺和圆规作出, 例如上面列举的 正五边形、正六边形、正八边形、正十边形等 .而另一些就 不能作出,例如正七边形、正九边形、正十一边形等,这些多边形只能用近似作图法.如何判断哪些作图可能,哪些作 图不可能呢?直到百余年前,用代数的方法彻底地解决了这 个问题,即给出一个关于尺规作图可能性的准则:作图可能 的充分必要条件是,这个作图问题
22、中必需求出的未知量能够 由若干已知量经过有限次有理运算及开平方运算而算出 .几千年来许多数学家耗费了不少的精力,企图解决所谓“几何 三大问题”: 田 立方倍积问题,即作一个立方体,使它的体积二倍于一 已知立方体的体积.三等分角问题,即三等分一已知角 .歹 化圆为方问题,即作一正方形,使它的面积等于一已知 圆的面积.后来已严格证明了这三个问题不能用尺规作图代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数 式是先化简再求值,特别是有附加条件的代数式求值问题, 往往需要利用乘法公式、绝对值与算术根的性质、分式的基 本性质、通分、求值中的方法技巧主要是代数式恒等变形的技能、技巧 和方法
23、.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求 值中,经常被采用.分析x的值是通过一个一元二次方程给出的,若解出 x 后,再求值,将会很麻烦.我们可以先将所求的代数式变形, 看一看能否利用已知条件.解已知条件可变形为 3x2+3x-1=o,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x 3+9x2-3x)+(3x 2+3x-1)+1=(3x 2+3x-1)(2z 2+3x+1)+1=0+1=1.说明 在求代数式的值时,若已知的是一个或几个代数 式的值,这时要尽可能避免解 方程(或方程组),而要将所要 求值的代数式适当变形,再
24、将已知的代数式的值整体代入, 会使问题得到简捷的解答.例2已知a, b, c为实数,且满足下式:a2+b2+c2=1,求a+b+c的值.解将式因式分解变形如下即所以a+b+c=0 或 bc+ac+ab=0.若 bc+ac+ab=0,贝U(a+b+c) 2二a2+b2+c2+2(bc+ac+ab)2 . 2 2 /=a +b +c =1,所以a+b+c= 1 .所以a+b+c的值为0, 1, -1 .说明 本题也可以用如下方法对式变形:前一解法是加一项,再减去一项;这个解法是将 3拆成1+1+1,最终都是将式变形为两个式子之积等于零的形式.2 .利用乘法公式求值例 3 已知 x+y=m, x3+
25、y3=n, m0,求 x2+y2的值.解因为x+y=m,所以m=(x+y) 3=x3+y3+3xy(x+y)=n+3m xy ,所以求 x2+6xy+y2 的值.分析 将x, y的值直接代入计算较繁,观察发现,已知中x, y的值正好是一对共轭 无理数,所以很容易计算出x+y 与xy的值,由此得到以下解法.解 x 2+6xy+y2=x2+2xy+y2+4xy=(x+y) 2+4xy3.设参数法与换元法求值如果代数式字母较多,式子较繁,为了使求值简便,有 时可增设一些 参数(也叫辅助 未知数),以便沟通数量关系, 这叫作设参数法.有时也可把代数式中某一部分式子,用另 外的一个字母来替换,这叫换元法
26、.分析 本题的已知条件是以连比形式出现,可引入参数 k,用它表示连比的比值,以便把它们分割成几个等式.x = (a-b)k , y = (b-c)k , z = (c-a)k所以x+y+z=(a-b)k + (b-c)k+(c-a)k=0 u+v+w=1,由有把两边平方得u2+v2+w +2(uv+vw+wu)=1 , 所以 u2+v2+w/=1,即两边平方有所以4.利用非负数的性质求值若几个非负数的和为零,贝U每个非负数都为零,这个性 质在代数式求值中经常被使用.例 8 若 x2-4x+|3x-y|=-4 ,求 yx 的值.分析与解x, y的值均未知,而题目却只给了一个方程, 似乎无法求值,
27、但仔细挖掘题中的隐含条件可知,可以利用 非负数的性质求解.因为 x2-4x+|3x-y|=-4 ,所以2x -4x + 4+ |3x-y|=0 ,即(x-2) 2+|3x-y|=0 .所以 yx=62=36.例9未知数x, y满足(x 2+ y2)m2-2y(x+n)m+y 2+n2=0, 其中 m n 表示非零已知 数,求x, y的值.分析与解两个未知数,一个方程,对方程左边的代数 式进行恒等变形,经过配方之后,看是否能化成非负数和为 零的形式.将已知等式变形为2 2 2 2 2 2 小mx +my -2mxy-2mny+y +n =0,(m2x2-2mxy+y2)+(m2y2-2mny+n
28、2)=0 ,即22(mx-y) +(my-n) =05利用分式、根式的性质求值 分式与根式的化简求值问题,内容相当丰富,因此设有 专门讲座介绍,这里只分别举一个例子略做说明例 10 已知 xyzt=1 ,求下面代数式的值:分析 直接通分是笨拙的解法,可以利用条件将某些项 的形式变一变解 根据分式的基本性质,分子、分母可以同时乘以一 个不为零的式子,分式的值不变利用已知条件,可将前三 个分式的分母变为与第四个相同同理分析 计算时应注意观察式子的特点,若先分母有理化,计算反而复杂 因为这样一来, 原式的对称性就被破坏了 这里所言的对称性是分利 用这种对称性,或称之为整齐性,来简化我们的计算同样( 但请注意算术根! )将,代入原式有练习六2.已知 x+y=a, x2+y2=b2,求 x4+y4 的值.3.已知 a-b+c=3 , a2+b2+c2=29, a3+b3+c3=45,求 ab(a+b)+bc(b+c)+ca(c+a) 的值.5 .设 a+b+c=3m 求(m-a) 3+(m-b) 3+(m-c) 3-3(m-a)(m-b)(m-c) 的值.x10 的值8已知 13x 2-6xy+y 2-4x+1=0 ,求 (x+y)13
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1