ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:80.76KB ,
资源ID:23479565      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/23479565.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(The Structure and Function of Enzymes.docx)为本站会员(b****2)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

The Structure and Function of Enzymes.docx

1、The Structure and Function of EnzymesThe Structure and Function of EnzymesChemical reactions in biological systems rarely occur in the absence of a catalyst. These catalysts are specific proteins called enzymes. The striking characteristics of all enzymes are their catalytic power and specificity. F

2、urthermore, the activity of many enzymes is regulated. In addition, some enzymes are intimately involved in the transformation of different forms of energy. Let us examine these highly distinctive and biologically crucial properties of enzymes.Enzymes Have Enormous Catalytic PowerEnzymes accelerate

3、reactions by factors of at least a million. Indeed, most reactions in biological systems do not occur at perceptible rates in the absence of enzymes. Even a reaction as simple as the hydration of carbon dioxide is catalyzed by an enzyme.Otherwise, the transfer of CO2 from the tissues into the blood

4、and then to the alveolar air would be incomplete. Carbonic anhydrase, the enzyme that catalyzes this reaction, is one of the fastest known. Each enzyme molecule can hydrate 105 molecules of CO2 in one second. This catalyzed reaction is 107 times faster than the uncatalyzed reaction.Enzymes are Highl

5、y SpecificEnzymes are highly specific both in the reaction catalyzed and in their choice of reactants, which are called substrates. An enzyme usually catalyzes a single chemical reaction or a set of closely related reactions. The degree of specificity for substrate is usually high and sometimes virt

6、ually absolute.Let us consider proteolytic enzymes as an example. The reaction catalyzed by these enzymes is the hydrolysis of a peptide bond.Most proteolytic enzymes also catalyze a different but related reaction, namely the hydrolysis of an ester bond.Proteolytic enzymes vary markedly in their deg

7、ree of substrate specificity. Subtilisin, which comes from certain bacteria, is quite undiscriminating about the nature of the side chains adjacent to the peptide bond to be cleaved. Trypsin is quite specific in that it splits peptide bonds on the carboxyl side of lysine and argentine residues only.

8、 Thrombin, an enzyme participating in blood clotting, is even more specific than trypsin. The side chain on the carboxyl side of the susceptible peptide bond must be arginine, whereas the one on the amino side must be glycine.Another example of the high degree of specificity of enzymes is provided b

9、y DNA polymerase I. This enzyme synthesizes DNA by linking together four kinds of nucleotide building blocks. The sequence of nucleotides in the DNA strand that is being synthesized is determined by the sequence of nucleotides in another DNA strand that serves as a template. DNA polymerase I is rema

10、rkably precise in carrying out the instructions given by the template. The wrong nucleotide is inserted into a new DAN strand less than once in a million times.The Activities of Some Enzymes Are RegulatedSome enzymes are synthesized in an inactive precursor form and are activated at a physiologicall

11、y appropriate time and place. The digestive enzymes exemplify this kind of control. For example, trypsinogen is synthesized in the pancreas and is activated by peptide-bond cleavage in the small intestine to form the active enzyme trypsin. This type of control is also repeatedly used in the sequence

12、 of enzymatic reactions leading to the clotting of blood. The enzymatically inactive precursors of proteolytic enzymes are called zymogens.Another mechanism that controls activity is the covalent insertion of a small group on an enzyme. This control mechanism is called covalent modification. For exa

13、mple, the activities of the enzymes that synthesize and degrade glycogen are regulated by the attachment of a phosphoryl group to a specific serine residue on these enzymes. This modification can be reversed by hydrolysis. Specific enzymes catalyze the insertion and removal of phosphoryl and other m

14、odifying groups.A different kind of regulatory mechanism affects many reaction sequences resulting in the synthesis of small molecules such as amino acids. The enzyme that catalyzes the first step in such a biosynthetic pathway is inhibited by the ultimate product. The biosynthesis of isoleucine in

15、bacteria illustrates this type of control, which is called feedback inhibition. Threonine is converted into isoleucine in five steps, the first of which is catalyzed by threonine deaminase. This enzyme is inhibited when the concentration of isoleucine reaches a sufficiently high level. Isoleucine bi

16、nds to a regulatory site on the enzyme, which is distinct from its catalytic site. The inhibition of threonine deasminase is mediated by an allosteric interaction, which is reversible. When the level of isoleucine drops sufficiently, threonine deaminase becomes active again, and consequently isoleuc

17、ine is again synthesized.The specificity of some enzymes is under physiological control. The synthesis of lactose by the mammary gland is a particularly striking example. Lactose synthetase, the enzyme that catalyzes the synthesis of lactose, consists of a catalytic subunit and a modifier subunit. T

18、he catalytic subunit by itself cannot synthesize lactose. It has a different role, which is to catalyze the attachment of galactose to a protein that contains a covalently linked carbohydrate chain. The modifier subunit alters the specificity of the catalytic subunit so that it links galactose to gl

19、ucose to form lactose. The level of the modifier subunit is under hormonal control. During pregnancy, the catalytic subunit is formed in the mammary gland, but little modifier subunit is formed. At the time of birth, hormonal levels change drastically, and the modifier subunit is synthesized in larg

20、e amounts. The modifier subunit then binds to the catalytic subunit to form an active lactose synthetase complex that produces large amounts of lactose. This system clearly shows that hormones can exert their physiological effects by altering the specificity of enzymes.Enzymes Transform Different Ki

21、nds of EnergyIn many biochemical reactions, the energy of the reactants is converted into a different form with high efficiency. For example, in photosynthesis, light energy is converted into chemical-bond energy. In mitochondria, the free energy contained in small molecules derived from foods is co

22、nverted into a different currency, that of adenosine triphosphate (ATP). The chemical-bond energy of ATP is them utilized in many different ways. In muscular contraction, the energy of ATP is converted into mechanical energy. Cells and organelles have pumps that utilize ATP to transport molecules an

23、d ions against chemical and electrical gradients. These transformations of energy are carried out by enzyme molecules that are integral parts of highly organized assembilies.Enzymes Do Not Alter Reaction EquilibriaAn enzyme is a catalyst and consequently it cannot alter the equilibrium of a chemical

24、 reaction. This means that an enzyme accelerates the forward and reverse reaction by precisely the same factor. Consider the interconversion of A and B. Suppose that in the absence of enzyme the forward rate (KF) is 10-4sec-1and the reverse rate (KR) is 10-6sec-1. The equilibrium constant K is given

25、 by the ratio of these rates:The equilibrium concentration of B is 100 times that of A, whether or not enzyme is present. However, it would take several hours to approach this equilibrium without enzyme, whereas equilibrium would be attained within a second when enzyme is present. Thus, enzymes acce

26、lerate the attainment of equilibria but do not shift their positions.Enzymes Decrease the Activation Energies of Reactions Catalyzed by ThemA chemical reaction, AB, goes through a transition state that has a higher energy than either A or B. The rate of the forward reaction depends on the temperatur

27、e and on the difference in free energy between that of A and the transition state, which is called the Gibbs free energy of a activation and symbolized by G.The reaction rate is proportional to the fraction of molecules that have a free energy equal to or greater than G . The proportion of molecules

28、 that have an energy equal to or greater than G increases with temperature.Enzymes accelerate reactions by decreasing G, the activation barrier. The combination of substrate and enzyme creates a new reaction pathway whose transition-state energy is lower than it would be if the reaction were taking

29、place in the absence of enzyme.Formation of an Enzyme-Substrate Complex Is the First Step in Enzymatic CatalysisThe making and breaking of chemical bonds by an enzyme are preceded by the formation of an enzyme-substrate (ES) complex. The substrate is bound to a specific region of the enzyme called t

30、he active site. Most enzymes are highly selective in their binding of substrates. Indeed, the catalytic specificity of enzymes depends in large part on the specificity of the binding process. Furthermore, the control of enzymatic activity may also take place at this stage.The existence of ES complex

31、es has been shown in a variety of ways:ES complexes have been directly visualized by electron microscopy and X-ray crystallography. Complexes of nucleic acids and their polymerase enzymes are evident in electron micrographs. Detailed information concerning the location and interactions of glycyl-L-t

32、yrosine, a substrate of carboxypeptidase A, has been obtained from X-ray studies of that ES complex.The physical properties of an enzyme, such as its solubility or heat stability, frequently change upon formation of an ES complex.The Spectroscopic characteristics of many enzymes and substrates chang

33、e upon formation of an ES complex just as the absorption spectrum of deoxyhemoglobin changes markedly when it binds oxygen or when it is oxidized to the ferric state, as described previously. These changes are particularly striking if the enzyme contains a colored prosthetic group. Tryptophan synthetase, a bacterial

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1