ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:21.61KB ,
资源ID:23468859      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/23468859.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(三大方面实现建筑节能设计打造节约型社会.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

三大方面实现建筑节能设计打造节约型社会.docx

1、三大方面实现建筑节能设计打造节约型社会三大方面实现建筑节能设计打造节约型社会摘要:在新的历史时期,面对日益突出的能源消耗问题,建筑节能成为建筑发展的一个趋势,也是现代建筑科学技术的一个新生长点。本文结合一些案例,阐述了现代建筑节能设计的实现。Pick to: in the new historical period, in the face of increasingly prominent energy consumption, building energy conservation has become a trend of development, is also a new grow

2、ing point in modern building science and technology. In this paper, combined with some cases, expounds the implementation of the modern building energy efficiency design. 关键词:建筑;节能;设计Keywords: building construction; Energy saving; design 随着我国经济社会的快速发展,能源问题越来越受到关注,而建筑作为我国能源消耗的重要方面之一,实现节能是建设节约型社会的关键。本

3、文主要探讨怎样实现现代建筑的节能设计。With the rapid development of social economy in our country, the energy problem has become more and more attention, and construction as one of the important aspect of Chinas energy consumption, realize the energy saving is the key to the construction of economical society. This pa

4、per mainly discusses how to realize the energy saving of modern architecture design. 一、改进围护结构的节能A energy saving, improvement of retaining structure 对于大窗墙比的建筑而言,即便考虑到了内扰和通风的可能变化范围,其能耗比仍大于1。这主要是因为围护结构负荷在总负荷中占了最大的比重,所以要减少这类建筑的能耗,应该重点改进围护结构的热工性能。下面以某活动场馆为例来分析不同改进措施带来的节能效果。某大型艺术活动场馆的共享大厅基本是全玻璃幕墙结构,主立面幕墙呈

5、圆弧形,并向内倾斜;总面积3018m2,建筑的体形系数0.1,符合标准的规定,主立面和屋顶的窗墙比均为1。For big window wall than building, even if considered within the interference and ventilation may change range, its energy consumption is still greater than 1. This is mainly because palisade structure load accounted for the largest proportion in

6、the total load, so to reduce this kind of building energy consumption, should focus on improving thermal performance of retaining structure. Below a certain activity venues as the example to analysis the energy saving effect of different improvement measures to bring. Basic sharing hall is a large a

7、rt activities venues full glass curtain wall structure, the main facade wall assumes the circular arc form, and inward tilt; A total area of 3018 m2, building shape coefficient of 0.1, in line with the standard regulation, the main facade and roof window wall is better than 1. (一)遮阳的影响。该建筑西北向的侧墙和屋顶是

8、全玻璃的,为了达到节能标准,应考虑采用遮阳措施。参考工程实际中的做法,以屋顶采用普通中空玻璃(传热系数K=3.1 W/(m2K),遮阳系数SC=0.67)为例,不断地提高其遮阳性能,使屋顶玻璃的等效SC值从0.67,逐渐下降到0.26,模拟计算不同工况下的实际建筑能耗和值,可以看出,随着SC的不断减小,热负荷逐渐增大,冷负荷逐渐减小,总负荷逐渐减小,逐渐减小,且变化基本上呈线性规律。但是,即便等效SC值降到了0.26,仍有110.1%,还是达不到节能标准。因此可以得出,对于大窗墙比的大型建筑,如果按照常见的工程做法选取普通的屋顶玻璃材料,单靠采取遮阳措施,是难以使建筑满足节能标准的。(a) s

9、hading effect. The building northwest to the side wall and roof is full of glass, in order to achieve energy saving standard, USES the sunshade measures should be taken into account. Reference in the engineering practice, by using ordinary insulating glass roof (heat transfer coefficient K = 3.1 W/(

10、m2 K), shading coefficient of SC = 0.67), for example, constantly improve its shading performance, make the roof glass equivalent SC value from 0.67, gradually decline to 0.26, under different working conditions, simulation calculation of the actual building energy consumption and eta value, it can

11、be seen that with the development of SC is reduced, heat load increases gradually, cooling load decreases, the total load decreases, eta is decreasing, and change is basically linear rule. But even equivalent SC value fell to 0.26, eta is still 110.1%, still can not meet the energy-saving standard.

12、Can therefore concluded that for big window wall than large buildings, if according to the engineering practice of the common ordinary glass roof materials, shading measures alone, is difficult to satisfy building energy saving standards. (二)玻璃热工性能的影响。玻璃的热工性能对大窗墙比建筑的能耗有着不可忽视的影响。本文分析了几种改进玻璃性能的工况,改进后玻

13、璃的热工参数是:K值1.16 W/(m2K),SC值0.26。根据分析,改进屋顶热工性能后只下降了2.6个百分点。建筑的冷热负荷都有所减小,但都不明显,所以建筑全年累计能耗的改善不明显。改进西北侧墙热工性能后,降低了6个百分点,热负荷变化与改进屋顶热工性能后差不多,但是冷负荷减少量更为明显,所以总体效果好于改进屋顶热工性能的结果。将屋顶和西北侧墙同时改进后,下降得更多,达到了100.6%。将所有玻璃都改进后,低于了100%,此时建筑达到了标准中规定的节能要求。由此可见,对于大窗墙比的建筑而言改进玻璃的热工特性是降低建筑能耗的重要手段。(2) the thermal performance of

14、 glass. Thermal performance of big glass window wall than energy consumption of the building has a noticeable effect. This paper analyses the working condition of several improved the performance of glass, the improved glass thermal parameter is: K value of 1.16 W/(m2 K), SC value of 0.26. According

15、 to the analysis, the improvement roof thermal performance after eta only decreased by 2.6%. Construction of hot and cold load less, but are not obvious, so building energy consumption in the treatment of annual accumulative total improvement is not obvious. Improve northwest edge wall thermal perfo

16、rmance, eta was reduced by 6%, the heat load change and improvement after roof thermal performance is similar, but the cooling load reduction is more obvious, so the overall effect is better than that of improved roof thermal performance. Roof and northwest edge wall is improved at the same time, th

17、e eta down more, reaching 100.6%. Will improve after all the glass and the eta is lower than 100%, the building has reached the standard in the regulation of energy requirements. Therefore, for building large window wall than improve glass thermal properties is one of the important means to reduce b

18、uilding energy consumption. (三)窗墙比的影响。透明围护结构的热工特性对此类建筑的能耗起着决定性的作用。原因显而易见,就是建筑的屋顶和西北侧墙的窗墙比严重超标。当屋顶的窗墙比降低到60%时,从109.5%下降到104.2%;当屋顶窗墙比满足标准要求的20%时,下降到100.3%,建筑基本达到节能标准。当西北向侧墙的窗墙比满足标准规定的70%时,下降到103.5%。由此可见,尽管实际建筑透明部分的热工性能好于参考建筑透明部分的热工性能,但由于其窗墙比过大,实际建筑能耗仍大于参考建筑的能耗。屋顶和侧墙的窗墙比越小,建筑的能耗也越小。(3) the window than

19、 the influence of the wall. Transparent retaining structure of the thermal characteristics of such buildings energy consumption plays a decisive role. Reason is obvious, that is, the roof of the building and northwest edge wall window wall than exceeds bid badly. When the roof window wall than it wa

20、s reduced to 60%, eta decreased from 109.5% to 104.2%; When the roof window wall than 20% meet the standard requirement, eta fell to 100.3%, building the basic meet energy conservation standards. When the northwest to the side wall of the window wall than 70% meet the standard regulation, eta droppe

21、d to 103.5%. Thus, although the actual building transparent part of the thermal performance is better than the reference architecture transparent part of the thermal performance, but because the window of the wall is too large, than the actual building energy consumption is still greater than the re

22、ference building energy consumption. Roof and side wall wall than the smaller, the window of the buildings energy consumption. 此外,当屋顶和侧墙的窗墙比减小的比例相同时,后者带来的能耗减少量更明显。但实际工程中,由于采光和视野等的需求,侧墙的窗墙比不可能减到很小,而屋顶窗墙比却可减到0。所以屋顶窗墙比过大是此类建筑节能的瓶颈所在。In addition, when the roof and side wall of the window wall than at th

23、e same time, reduce the proportion of phase which is brought by energy consumption reduction is more obvious. But in practical engineering, because of the daylighting and view of demand, the side wall of the wall than may be reduced to a small window, wall and roof window than can be reduced to 0. S

24、o the roof window wall too much than has been the bottleneck of building energy efficiency. 二、加强建筑节能的个体设计Second, strengthen the individual design of building energy efficiency (一)控制体型系数。体型系数系指建筑物与室外大气接触的面积与其所包围的建筑体积之比。体型系数越大说明单位建筑所分担的热散失面积越大,能耗就越多。有资料表明,体型系数每增加0.01,耗热量指标约增加 2.5%。建筑体型系数还与建筑物的体量大小有关。一

25、般来说,控制或降低体型系数的措施包括:减少建筑面宽,加大建筑进深;增加建筑物的层数;增加组合建筑体型不宜变化过多。(a) control of shape coefficient. Shape coefficient refers to the buildings and outdoor atmospheric exposure of volume ratio of the area and its surrounded by buildings. Building shape coefficient, the greater the show units of heat dissipatin

26、g area is larger, the more energy consumption. Have data show that shape coefficient, every 0.01 increase heat consumption index increased about 2.5%. The size of the building shape coefficient and the structure of the body. In general, control or reduce the shape coefficient of the measures include

27、: (1) reducing the noodles wide, strengthen construction depth; 2 increase the structure of the layer; (3) increase the combination (4) building shape should not change too much. (二)控制表面面积系数。从获取更多的日照辐射,降低耗能来看,表面面积系数越小越好。从节能意义来说,长轴朝向的长方形体型最好,正方形次之,而长轴朝向南北方向的长体型的建筑节能效果最差。(2) control surface area coeff

28、icient. From getting more of the sun radiation, reducing energy consumption, coefficient of surface area as small as possible. Energy-saving sense, from the long axis direction of the rectangular shape is best, times square, north and south direction and long axis of the long size of building energy

29、 conservation effect is the worst. (三)选择适当的长宽比。对正南朝向来说,一般长宽比越大,得热越多。但需注意,随着朝向的变化,其得热量会逐渐减少。当偏角达到67?时,各种长宽比体型建筑的得热基本趋于一致。当偏角为90?时,则长宽比越大,得热越少。(3) select the appropriate aspect ratio. For south toward the general aspect ratio, the greater the heat gain the more. But note that with the change of direct

30、ion, the heat will gradually reduce. When the Angle of 67? , all kinds of the aspect ratio of body building heat gain basic consistent. When the Angle is 90? When the aspect ratio, the greater the heat gain less. (四)最低耗能体型的选择。所谓最低耗能体型,是指建筑的各方面尺寸预期有效传热系数相对应的最佳体型。一般来讲,当各方面的平均有效传热系数不同时,传热系数相对较少的面具有相应 较

31、大面积的体型是最佳体型;当各面的平均传热系数相同时,最小的体型系数是最佳体型。(4) the lowest energy consumption size selection. The lowest energy consumption size, refers to the building size of the various aspects of expected effective heat transfer coefficient corresponding to the best shape. Generally speaking, when all aspects of the

32、 average effective heat transfer coefficient at the same time, the face of the heat transfer coefficient is relatively small with relatively large size is the best; When the average heat transfer coefficient of the phase at the same time, is the smallest shape coefficient in the best shape. (五)良好的构造设计。(5) good structure design. 此处所提的建筑各部分的构造设计是在满足作为建筑的基本组成部分的要求之外,通过对屋顶、楼板、墙体、门窗等进一步的设计,以满足建筑在创造舒适的室内环境的同时符合建筑的节能要求。例如屋顶中庭的采光顶中,采用双层玻璃形成“呼吸外壁”,使之既能采光,叉能导入自然风,降低环境因素的影响。Here proposed architectural structure design of each part is in meeting, as an integral part of the construction of the b

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1