1、生物化工的现状与未来展望生物化工的现状与未来展望 一、国内外生物化工现状 生物化工是利用生物体(酶、微生物、细胞及细胞组织)结合化学和工程系原理进行化学品的加工或提供相应的社会服务(如环境治理)。生物化工有时又称为生物加工过程,生物化工生产的产品有以下几类:精细化学品如维生素、色素等;生物材料如生物可降解材料聚乳酸、壳聚糖及手性化合物等;医药及生物制剂如青霉素、头孢、干扰素等;农用化学品如生物农药、微生物肥料等;功能性食品及食品、饲料添加剂。 目前全球已拥有年销售额大于10亿美元的生物技术产品数10个。到本世纪末,全球生物化工工业产品销售额可达1000亿美元。仅美国从事生物技术制品生产的公司约
2、1300多家,其中较大的生物制药公司有225家,年工业投资达350亿美元。90年代初,日本生物技术产业总产值占国民经济总值的5%以上,计划至2005年,生物技术创造的产值将是国民经济总产值的10%左右。 生物化工是生物技术产业化的关键,目前生物技术主要在医药、农业及保健食品领域,但是生物化工在化学品的制备中发展是最快的,每年以18%的速度发展,许多过去以化学法生产的化学品如丙烯酰胺等都开始采用生物法生产,可见生物化工在化学工业中的重要作用。 国外生物化工发展趋势有以下特点: 1.生物化工成为国外著名化学公司争夺的热点 生物技术从医药领域逐渐向化工领域转移,使传统的以石油为原料的化学工业发生变化
3、,向条件温和、以可再生资源为原料的生物加工过程转移。如传统化学法合成的丙烯酰胺已在日本实现了生物法合成工业化,成本和产品纯度都优于化学法合成的丙烯酰胺。又如杜邦公司开发的生物法合成乙醛酸转化率和选择性都达到100%,明显优于化学合成法。许多著名的老牌化学工业公司已变成了以生物技术为主的大公司,如美国的孟山都公司,1997年由生物技术生产的销售额已占其总销售额的70%以上。就连老牌的杜邦公司在2001年宣称该公司2002年生物技术产品的销售额占其公司总销售额的20%。 2.生物催化合成已成为化学品合成的支拄之一 利用生物催化(酶、微生物等催化)合成化学品不但具有条件温和、转化率高的优点,而且可以
4、合成手性化合物及高分子。手性化合物是国外目前生物技术的主要生产产品。应用手性技术最多的是制药领域,包括手性药物制剂、手性原料和手性中间体。乙醛酸是合成香兰素和许多中间体的重要原科,乙醛酸目前主要采用化学法生产,工艺路线有乙二醛氧化法、氯乙酸氧化法及草酸电解法等,生产厂家主要集中在日本、美国和德国等发达国家。其中草酸电解法由于反应条件较温和,转化率高,是目前国内外大多数厂家采用。化学法工艺的主要问题是反应条件苛刻(240),乙醛酸转化率低,仅60%80%,环境污柒严重。由于转化率低,分离纯化工艺复杂,一般乙醛酸产品纯度仅40%,而90%纯度的乙醛酸价格比40%纯度的乙醛酸高56倍。1995年日本
5、天野制药公司申请了第一个双酶法生产乙醛酸的工艺。其专利采用乙醇酸氧化酶和过氧化氢酶,首先乙醇酸氧化酶将乙醇酸转化为乙醛酸过氧化物,过氧化氢酶可将乙醇酸氧化产生的过氧化氢分解,从而大大地提高了乙醛酸的转化率(达100%),大大地简化了分离纯化工艺。1995年底美国杜邦公司申请了基因工程酶方法生产乙醛酸的专利,乙醛酸的转化率达100%。 3.利用生物技术生产有特殊功能、性能、用途或环境友好的化工新材料,是化学工业发展的一个重要趋势 它具有原料来源广、制备简单、质量好及环境污染少等优点,特别是利用生物技术可生产一些化学法无法生产或生产成本高或对环境产生不良影响的新型材料,如丙烯酰胺、长链二元酸或壳聚
6、糖等。目前国外许多大公司如杜邦、孟山都在生物新材料上研究上投入了大量的人力和物力。可以预见生物技术新材料的研究和开发不但具有很好的经济效益,而且对环境治理及社会发展具有十分重要的推动作用。 传统化学法由丙烯腈合成的丙烯酰胺,转化率仅为97%98%。由化学法合成的丙烯酰胺聚合生成的聚丙烯酰胺分子量很难超过1200万。而采用生物法即采用丙烯腈水合酶催化合成,丙烯酰胺转化率达99.99%以上,比化学法成本低10%以上。由于丙烯酰胺纯度高,聚合生成的聚丙烯酰胺分子量可达到2000万,可成功用于油田三次采油。生物法自80年代在日本实现了生物法合成工业化,成本和产品纯度都优于化学法合成的丙烯酰胺。我国在2
7、000年实现了万吨级生物法丙烯酰胺的工业化,目前我国生物法合成的聚丙烯酰胺能力已达10万吨,达到了国际领先水平。 单甘油酯是一种重要的表面活性剂,目前主要为以天然油脂的甘油解反应的化学法生 产,该工艺在高温(高于200)下,以碱为催化剂催化油脂与甘油反应,产物为单甘酯和二甘酯(各占45%)。化学法工艺有以下缺点:需在高温条件下反应,能源消耗大;高温导致油脂的降解,产生深褐色和焦糊味;需要分子精馏分离单甘酯和二甘酯。国外如日本及德国在90年代开发了酶法生产单甘酯新工艺,单甘酯产率达80%,目前已达到生产规模。生物酶法生产单甘酯比化学法的专一性高,简化了后提取工艺,大大降低了生产成本。国内在酶固定
8、化和酶反应器开发上进行了工作,单甘醒的转化率达76%。 传统的高分子都是用化学聚合方法进行的,近几年,开始采用生物方法生产功能高分子,特别是生物可降解高分子的生产。许多生物功能材料如多糖都是由生物发酵法生产的,如透明质酸、黄原胶等目前都已实现了发酵法生产。 利用酶法生产的氨基酸有很多,如天门冬氨酸是生物化工技术在石油化工中应用的又一个成功例子,比化学法具有明显的优点。如利用顺酐和宫马酸等为原料经化学法生产天门冬氨酸转化率仅为80%85%,而采用酶法生产,天门冬氨酸的转化率可达90%以上。我国目前天门冬氨酸产量已达7000t左右,90%以上采用酶法合成。以生物法合成的天门年氨酸可以合成高分子量的
9、聚天门冬氨酸(10万以上)。 4.传统的发酵工业巳由基因重组酶种取代或改良 许多传统的发酵工程产品如柠檬酸、青霍素等都已开始采用基因工程手段进行改造,大大地提高了产量。在以基因工程为主导的现代生物技术产品中,医药生物技术产品占75%左右。 二、我国生物化工现状与差距 1.现状 我国的生物技术在70年代中期开始起步,已经走过20年左右的历程。国内许多研究单位也相继开展基因工程、细胞工程、酶工程和发酵工程的研究,为我国生物技术的发展奠定了基础。这个阶段,我国生物技术发展的特点是全面学习、跟踪国外;发展水平以基因工程为例,还处于“国外元件,国内组装”的阶段。1986年以后这10多年是我国生物技术发展
10、的黄金时期。从“七五”开始连续3个五年计划,生物技术都被列为国家科技攻关项目;从1986年开始生物技术被列入国家高技术计划;国家自然科学基金也重点支持生物技术的重要基础研究;国家计委和国家科委又支持建立一批生物技术的国家重点开放实验室。我国已形成了医药生物技术、农业生物技术、生物化工技术、海洋生物技术等上、中、下游结合,门类齐全的生物技术研究、开发、生产的体系。 我国生物化工产业在生物技术产业中占有相当地位,而且发展速度很快,生物化工在生物技术产业销售额的比重由1985年的38%提高到1996年的68.3%,而此期间生物化工的科技开发投入远低于其他生物技术的科技开发投入,由次可见,生物化工是一
11、个投入产出比高,潜力大、显示度高的新兴产业。 2.我国与国外生物化工行业的主要差距 (1)生物化工技术科技开发投入少,技术队伍相对薄弱 生物技术是一个高科技开发投入的技术,我国“九五”期间全国的生物技术科研开发投入仅4亿元,从事生物技术科研开发的人员不到1万人,因此与发达国家比差距较大,而且主要的科研经费都用在基因工程等上游研究开发,在生物化工开发上投入较少。生物化工技术是投入产出比高、显示度大的的高新技术,如我国柠檬酸和丙烯酰胺的生物法合成都在世界上有一定影呐,而实际的科研开发费用并不大。生物化工可显著提高医药和轻化工的技术水平,而且对于新兴产业的形成,城乡居民的就业,特别是提高农业产品产量
12、和质量及农民收入有重要意义。 (2)产品结构不合理 我国生物技术主要集中在医药和食品领域,而食品领域又集中在几个传统产品如柠檬酸、味精等。我国拥有世界四分之一的人口,但生物技术产品种类和产量与世界水平差距很大。 酶工程和新型酶制剂的开发是生物技术的重要部分,在提高轻化工产品质量,改善人们生活水平上有重要意义。如日本、欧洲和美国加酶洗涤剂占洗涤剂产量的95%、90%和65%,而我国仅占70%。国外许多传统的化学有机合成已被酶催化代替,如脂肪酶酶法生产单甘油酯比化学法生产单甘油醋具有明显的优点,利用酶法合成具有生物活性的手性化合物是国内外酶工程的发展方向,而我国目前还没有用于有机合成的脂肪酶。又如
13、我国生产的配合和混合饲科已达4500万t,但国内尚无商品化的饲科用酶如桓酸酶 (3)缺乏相配套的生物技术设备 我国生物化工生物技术产业化的例子并不多,虽然科研体制和市场开发不完善是一个重要原因,但另一个重要原因是我国缺乏相配套的工艺的工业化放大和装备的国产化问题。我国目前轻化工生物技术的装备如大型反应器、层析装置、大型离心设备主要依靠进口,如果不加以解决,这个问题将成为我国生物技术产业化的瓶颈之一,因此必须解决生物技术产 业化的关键技术特别是关键设备,从根本上改变我国生物技术装备主要依靠进口的局面。(4)缺乏综合利用与请洁工艺观念,浪费及污染严重 我国传统发酵工业如柠檬酸发酵、青霉素发酵缺乏综
14、合利用,产生许多废物和废水。国外如日本,在清洁工艺上进行了大量的工作,开发了许多清洁工艺,大大提高了产品的附加值,降低了消耗,同时减少了废水排放。 三、生物化工主要产品的研究进展 1.生物法化学品 酶催化或微生物转化由于具有专一性高,条件温和的特点而成为化学合成的重要支柱。由于化学生产中酶的新用途不断开发,促使工业用酶需求量增长,据Freedonia集团公司预测,美国工业用酶和专用酶的市场将以10%以上的增长率扩大,另据FrostSuilivan公司报道,欧洲工业用酶的市场预计到2003将增加至9.065亿美元,年增长达10%,工业用酶将在下一世纪日益广泛地应用于化学工业,医药农药工业,食品业
15、等方面。已工业化的酶法合成有类固酵及甾醇合成、类萜合成、生物碱合成、半合成抗生素合成、有机酸类合成、糖的转化、药用多肽及蛋白质的合成、氨基酸类合成、核苷酸类合成、胶合成及日用化学品合成等。 (1)有机酸和氨基酸 采用生物催化合成的有机酸有:柠檬酸、苹果酸、酒石酸、乳酸、衣康酸和丙酸等。国外在90年代实现了生物合成上述有机酸的工业化,如乙醛酸的生产,美国杜邦和日本公司都已实现了酶法转化,转化率和选择性都是100%。我国的柠檬酸产量已达到世界第二,但其他酸产量较少,乙醛酸还是化学法生产,转化率和选择性分别是70%和65%。再如苹果酸也建立了酶法的工业化装置,但由于和国外水平差距较大,而处于半停产状
16、态。我国在有机酸的酶法合成上取得了可喜成绩,如1999年底建立了固定化细胞生产酒石酸(江苏常州, 100t/a)和丙酸(广西南宁,1000t/a)的装置。酒石酸和丙酸的酶法合成技术已达到国际先进水平。我国L乳酸生产已具有相当规模(生产能力达3000t左右)。 利用酶法生产的氨基酸有很多如天门冬氨酸、苯丙氨酸等。我国在发酵法生产谷氨酰胺技术已取得重要突破,目前山东大学已完成中试,可望几年内实现工业化。我国其他主要品种氨基酸如赖氨酸等依然依靠进口或化学法合成。 (2)手性化合物 酶催化剂将化学合成的前体、潜手性化合物或外消旋衍生物转化成单一光学活性产物,这些手性化合物可作为医药、农药、香料、功能性
17、材科的前体,中间体或终产物在精细化工产品的生产中占有极其重要的地位。手性化合物是利用生物催化剂(酶)的生物合成与拆分不仅加快化学合成所需的手性源问题,还可以减少化学合成造成的环境污染以及无效对映体,称为“绿色合成“。酶法或多酶系统催化(微生物转化)反应已经应用于药物、食品添加剂等工业化的生产合成中,将在手性化合物、药物、功能生物高分子、非天然化合物、精细化学品及其中间体等方面有广阔应用前景。德国BASF公司研究的酶法可生产旋光性胺、氨基醇、醇和环氧化合物,用脂酶催化拆分外消旋混合物,产品收率高,对映异构体纯度高。 我国手性药物中抗生素、维生素、激素和氨基酸占相当大数量,但大多采用传统的拆分方法
18、。在70年代后期开始生物合成手性化合物的研究,目前己实现L天冬氨酸、L苹果酸的工业化,对L乳酸、D苯甘氨酸、D对经基甘氨酸、L苯丙氨酸、L色氨酸的不对称合成和(s)布洛芬的酶法拆分都取得了很好结果,但手性技术的开发亟待加强,目前仍存在缺少创新和基础研究薄弱的问题,与世界手性工业的发展有较大差距。 (3)化工产品 利用生物法生产丙烯酰胺是生物化工在化工产品生产中应用最成功的例子。 发酵法生产甘油是我国无锡轻工大学最早开发而且在国际上技术领先的一项生物化工技术,我国目前的生物法甘油生产能力己达1000t以上。但发酵法甘油和化学法甘油的竞争还是很激烈的。近年来由于石油原料的降价,使我国生物法生产甘油
19、受到中击。 利用石油原料,如十二烷烃酶催化合成长链二元酸是我国生物技术用于石油化工的一大突破,己由中科院微生物所和抚顺石油化工研究院分别建立了年产200t二元酸的工业化装置,技术水平达到国际领先水平。 (4)功能性食品及添加剂 利用生物技术生产功能性食品(如低聚糖、食品添加剂)是近年来生物技术发展的热点。生产的低聚糖有多种,如低聚果糖、低聚麦芽糖、低聚异麦芽糖、低聚木糖和壳低聚糖等。我国的低聚糖己初具规模,年产量己达5万t以上,但品质不全。 生物发酵法可以生产许多维生素,如B2,B12,Vc,Vd等。我国Vc生产能力己达2万t以上。B2和B12都己工业化。Vd目前依然依靠进口,经过“九五“攻关
20、己建立了年产0.8t Vd的工业装置,可望12年内解决Vd主要进口的局面。 (5)生物高分子新材料 聚羟基丁酸酯(PHB)和聚经基丁酸经基戊酸(PHBV)是一种性能优良的生物可降解高分子。英国ICI己建立了百吨级的工业化装置。我国清华大学和中科院微生物研究所在发酵法生产PHB上取得了较大的进展,完成了有关的中试工作,但目前生产成本太高。 壳聚糖在医药、食品和化工中有重要用途,目前国内外都是采用以虾壳为原料生产,因原科有限,成本高,而且质量不稳定。日本旭硝子公司开展了发酵法壳聚糖的研究。国内北京化工大学己建立了年产250t的发酵法生产壳聚糖工业化装置,为发酵法生产壳聚糖的工业化莫定了基础。 聚乳
21、酸是目前国外工业化成功的生物可降解的高分子,美国公司和D0W公司成立了联合公司,己建立了年产1.6万t的聚乳酸装置。我国目前由于高纯度的L乳酸尚未工业化,对我国聚L乳酸工业化产生了不良影响。我国一些单位开展了聚乳酸的研究,目前主要处于小试阶段。 聚天门冬氨酸是一种优良的生物可降解的高分子,可用于水处理剂、吸水树脂及农用化学品。目前国外大公司如美国的东大公司、德国的拜耳公司都己建立了干吨级聚天门冬氨酸的装置,而且不断地扩展。国内也有单位开展有关的研究,目前基本处在小试阶段,但由于我国天门冬氨酸的产量和顺酐的产量较大,因此实现聚天门冬氨酸的工业化是很有希望的。 (6)油脂化学品 利用酶进行油脂化学
22、品的加工,改善油脂的种类和品质是生物技术的一个研究方向。如单甘油酯的酶法合成,转化率可达90%以上,而传统化学法只有50%左右。又如可可酯的生产,采用酶法合成可大大降低成本,国外利用酶法合成的可可酯己进入市场。我国华东理工大学在可可酯的酶法合成、北京化工大学在单甘油酯的酶法合成方面都取得了一定成绩,但目前主要在中试研究,离工业化还有差距。 2.环境生物技术 (1)有毒物质的生物降解 废水和土壤中石油的降解国外己实现了工业化,而且己成功地用于海上泄漏石油的处理。我国目前己完成中试。有毒物质如苯酚、卤代烃特别是卤代芳香烃的降解是污水治理的一大难题。目前国外开展了大量的有关研究,并且建立了中试装置。
23、国内刚刚开始有关的研究,在有关染料废水的生物降解上取得了一定成绩,建立了有关的中试装置。 (2)微生物脱硫 煤和石油中的硫是导致空气污染(酸雨)的主要原因之一,化学法脱硫效率较低,而且对有机硫效果不明显。国内生物脱硫目前主要处在研究阶段,有些单位如山东大学已获得了脱硫高效茵种。 (3)生物法去除或回收重金属离子 重金属离子的去除和回收是国内外一大难题。国外在利用微生物吸附重金属离子方面进行了大量的工作,如南非已建立了利用生物法提取黄金的中试装置,德国生物技术研究所(GBF)建立生物法脱除废水中中试装置,目前已连续运转1年多。法国和俄罗斯都进行了有关的研究。国内在利用生物法治理含重金属离子废水上
24、取得了一定成绩,建立一些中试装置,北京化工大学建立了国内第一条年处理量1万t皮革厂含铬废水的工业装置已投入运行(山东曲阜),但目前离真正工业化普及仍有一定距离。 四、提高我国生物化工水平的建议 1.强调创新和传统产么改造相结合 自主研究和引进先进技术相结合,跟踪和创新并举。优先支持、鼓励研究开发具有自主知识产权的新产品、新材料、新工艺、新设备,逐步形成一批生物化工的优势产品,为生物化工技术产业增长方式的转变和可持续发展服务,用生物技术改造传统的化工技术,建立新型生物化工产业,为下一步发展奠定基础。 2、提高学科交叉,提高我国的生物化工装备能力 我国目前生物化工设备主要依靠进口,当然我国机械加工
25、和机电一体化水平与国外有一定差距,但另外一个原因是学科交叉少,不同学科沟通少。因此培养一批具有生物、化工和机电等综合能力的新型生物技术研究、开发人才十分必要。又如生物医用高分子材料,仅靠生物化工专业的人是不够的,若能组织多学科的攻关,实现生物医用高分子材料的产业化是完全可能的。 3.广泛吸收资金,加大生物化工的科技开发投入 生物化工是高科技开发投入、高产出的产业,这种高科技投入,并不是完全来自政府,相当一部分来自民间,特别是通过风险投资和股票上市,筹措资金加快生物技术的产业化。在资金筹措过程中,政府的作用是非常重要的,所以日本提倡的模式是产、学、研、宫、资相结合,是值得我们思考的,这里宫是指政府,资是指融资和银行;生物化工是基于生物转化生产化学品的高技术,是生物技术的重要组成部分,具有条件温和、选择性高和污染小的特点,是现代绿色化学加工业的重要组成部分。可以预见生物化工是21世纪化学工业最富 生命力的技术。生物化工对于促进化学工业技术进步和产业结构调整、促进绿色化学工业的发展起着至关重要的作用。
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1