ImageVerifierCode 换一换
格式:DOCX , 页数:17 ,大小:69.91KB ,
资源ID:23119780      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/23119780.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(微观计量经济学模型ModelofMicroeconometrics.docx)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

微观计量经济学模型ModelofMicroeconometrics.docx

1、微观计量经济学模型ModelofMicroeconometrics微观计量经济学模型(Model of Microeconometrics)1.1 Generalized Linear ModelsThree aspects of the linear regression model for a conditionally normally distributed response y are:(1)The linear predictor through which .(2) is (3)GLMs: extends (2)and(3) to more general families of

2、 distributions for y. Specifically, may follow a density:canonical parameter, depends on the linear predictor.:dispersion parameter, is often known.Also and are related by a monotonic transformation,Called the link function of the GLM.Selected GLM families and their canonical linkFamilyCanonical lin

3、kNamebinomiallogitgaussianidentitypoissonlog1.2 Binary Dependent VariablesModel:In the probit case: equals the standard normal CDFIn the logit case: equals the logistic CDFExample:(1)DataConsidering female labor participation for a sample of 872 women from Switzerland.The dependent variable: partici

4、pationThe explain variables:income,age,education,youngkids,oldkids,foreignyesandage2.R:library(AER)data(SwissLabor)summary(SwissLabor)participation income age education no :471 Min. : 7.187 Min. :2.000 Min. : 1.000 yes:401 1st Qu.:10.472 1st Qu.:3.200 1st Qu.: 8.000 Median :10.643 Median :3.900 Medi

5、an : 9.000 Mean :10.686 Mean :3.996 Mean : 9.307 3rd Qu.:10.887 3rd Qu.:4.800 3rd Qu.:12.000 Max. :12.376 Max. :6.200 Max. :21.000 youngkids oldkids foreign Min. :0.0000 Min. :0.0000 no :656 1st Qu.:0.0000 1st Qu.:0.0000 yes:216 Median :0.0000 Median :1.0000 Mean :0.3119 Mean :0.9828 3rd Qu.:0.0000

6、3rd Qu.:2.0000 Max. :3.0000 Max. :6.0000 (2) EstimationR:swiss_prob=glm(participation.+I(age2),data=SwissLabor,family=binomial(link=probit)summary(swiss_prob)Call:glm(formula = participation . + I(age2), family = binomial(link = probit), data = SwissLabor)Deviance Residuals: Min 1Q Median 3Q Max -1.

7、9191 -0.9695 -0.4792 1.0209 2.4803 Coefficients: Estimate Std. Error z value Pr(|z|) (Intercept) 3.74909 1.40695 2.665 0.00771 * income -0.66694 0.13196 -5.054 4.33e-07 *age 2.07530 0.40544 5.119 3.08e-07 *education 0.01920 0.01793 1.071 0.28428 youngkids -0.71449 0.10039 -7.117 1.10e-12 *oldkids -0

8、.14698 0.05089 -2.888 0.00387 * foreignyes 0.71437 0.12133 5.888 3.92e-09 *I(age2) -0.29434 0.04995 -5.893 3.79e-09 *-Signif. codes: 0 * 0.001 * 0.01 * 0.05 . 0.1 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 1203.2 on 871 degrees of freedomResidual deviance: 1017.2 on 86

9、4 degrees of freedomAIC: 1033.2Number of Fisher Scoring iterations: 4(3)VisualizationPlotting participation versus ageR:plot(participationage,data=SwissLabor,ylevels=2:1)(4)EffectsAverage marginal effects:The average of the sample marginal effects: R:fav=mean(dnorm(predict(swiss_prob,type=link)fav*c

10、oef(swiss_prob)(Intercept) income age education youngkids 1.241929965 -0.220931858 0.687466185 0.006358743 -0.236682273 oldkids foreignyes I(age2) -0.048690170 0.236644422 -0.097504844The average marginal effects at the average regressor:R:av=colMeans(SwissLabor,-c(1,7)av=data.frame(rbind(swiss=av,f

11、oreign=av),foreign=factor(c(no,yes)av=predict(swiss_prob,newdata=av,type=link)av=dnorm(av)avswiss*coef(swiss_prob)-7avforeign*coef(swiss_prob)-7swiss: (Intercept) income age education youngkids 1.495137092 -0.265975880 0.827628145 0.007655177 -0.284937521 oldkids I(age2) -0.058617218 -0.117384323For

12、eign:(Intercept) income age education youngkids 1.136517140 -0.202179551 0.629115268 0.005819024 -0.216593099 oldkids I(age2) -0.044557434 -0.089228804(5)Goodness of fit and predictionPseudo-R2:as the log-likelihood for the fitted model, as the log-likelihood for the model containing only a constant

13、 term.R: swiss_prob0=update(swiss_prob,formula=.1)1-as.vector(logLik(swiss_prob)/logLik(swiss_prob0)1 0.1546416Percent correctly predicted:R:table(true=SwissLabor$participation,pred=round(fitted(swiss_prob) predtrue 0 1no 337 134yes 146 25567.89%ROC curve:TPR(c):the number of women participating in

14、the labor force that are classified as participating compared with the total number of women participating.FPR(c):the number of women not participating in the labor force that are classified as participating compared with the total number of women not participating.R:library(ROCR)pred=prediction(fit

15、ted(swiss_prob),SwissLabor$participation)plot(performance(pred,acc)plot(performance(pred,tpr,fpr)abline(0,1,lty=2)Extensions: Multinomial responsesFor illustrating the most basic version of the multinomial logit model, a model with only individual-specific covariates,.data(BankWages)It contains, for

16、 employees of a US bank, an ordered factor job with levels custodial, admin(for administration), and manage (for management), to be modeled as afunction of education (in years) and a factor minority indicating minority status. There also exists a factor gender, but since there are no women in the ca

17、tegory custodial, only a subset of the data corresponding to males is used for parametric modeling below.summary(BankWages) job education gender minority custodial: 27 Min. : 8.00 male :258 no :370 admin :363 1st Qu.:12.00 female:216 yes:104 manage : 84 Median :12.00 Mean :13.49 3rd Qu.:15.00 Max. :

18、21.00 summary(BankWages)edcat - factor(BankWages$education)edcatlevels(edcat)3:10 - rep(c(14-15, 16-18, 19-21),+ c(2, 3, 3)head(edcat)tab - xtabs( edcat + job, data = BankWages)head(tab)prop.table(tab, 1)head(BankWages)library(nnet)bank_mn2 |z|) (Intercept) 0.2649934 0.0937222 2.8274 0.004692 * qual

19、ity 0.4717259 0.0170905 27.6016 2.2e-16 *skiyes 0.4182137 0.0571902 7.3127 2.619e-13 *income -0.1113232 0.0195884 -5.6831 1.323e-08 *userfeeyes 0.8981653 0.0789851 11.3713 2.2e-16 *costC -0.0034297 0.0031178 -1.1001 0.271309 costS -0.0425364 0.0016703 -25.4667 2.2e-16 *costH 0.0361336 0.0027096 13.3

20、353 0 and underdispersion to a 0. Common specifications of the transformation function h are h() = 2 or h() = . The former corresponds to a negative binomial (NB) model (see below) with quadratic variance function (called NB2 by Cameron and Trivedi 1998), the latter to an NB model with linear varian

21、ce function (called NB1 by Cameron and Trivedi 1998). In the statistical literature, the reparameterization Var(yi|xi) = (1 + a) i = dispersion iof the NB1 model is often called a quasi-Poisson model with dispersion parameter.R: dispersiontest(rd_pois) Overdispersion testdata: rd_pois z = 2.4116, p-value = 0.007941alternative hypothesis: true dispersion is greater than 1 sample estimates:dispersion 6.5658R:dispersiontest(rd_pois, trafo = 2) Overdispersion testdata: rd_pois z = 2.9381, p-value = 0.001651alternative hypothesis: true alpha is greater than 0 sample estimates: alpha 1.316051Bo

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1