ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:21.72KB ,
资源ID:23105641      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/23105641.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(悬浮进样电热原子吸收光谱以及液体取样电感耦合等离子体发射光谱对茶叶中钡铜铁铝锌的对比测定研究.docx)为本站会员(b****2)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

悬浮进样电热原子吸收光谱以及液体取样电感耦合等离子体发射光谱对茶叶中钡铜铁铝锌的对比测定研究.docx

1、悬浮进样电热原子吸收光谱以及液体取样电感耦合等离子体发射光谱对茶叶中钡铜铁铝锌的对比测定研究悬浮进样电热原子吸收光谱以及液体取样电感耦合等离子体发射光谱对茶叶中钡、铜、铁、铝、锌的对比测定研究 悬浮进样电热原子吸收光谱以及液体取样电感耦合等离子体发射光谱对茶 叶中钡、铜、铁、铝、锌的对比测定研究 J. Mierzwa *, Y.C. Sun, Y.T. Chung, M.H. Yang 摘要 本文通过两种原子光谱技术对于茶叶中的钡、铜、铁、铝、锌进行了对比测定研究。首先,采用悬浮进样电热原子吸收光谱电热原子吸收光谱(ETAAS)技术。通过标准加入法测定钡和铝的含量,而铜、铁和锌的含量则通过标准

2、溶液的校准曲线来测定。除Pb由电热原子吸收光谱法(ETAAS)的消解外,最终的测定结果将与微波湿法消解电感耦合等离子体原子发射光谱(ICP-AES)法同时测定的结果进行比较。用国家一级标准物质茶叶(GBW-07605)评价该方法的准确性。采用悬浮进样电热原子吸收光谱(ETAAS)分析物的回收率在91%99%之间。而液体取样ICP-AES的回收率在92.5%102%之间。悬浮进样ETAAS的优点在于简单的样品制备技术以及良好的敏感性。电热原子吸收光谱(ETAAS)悬浮进样法相对而言比较快捷。然而,如果同一个样品含多种时,微波消解电感耦合等离子体原子发射光谱(ICP-AES)法则应用时更少。但是,

3、需要考虑到某些分析物在电感耦合等离子体原子发射光谱(ICP-AES)下检测限更差。 关键词:电热原子吸收光谱法(ETAAS);电感耦合等离子体原子发射光谱(ICP-AES)法;悬浮进样;微波辅助湿法消解;茶叶;重金属检测 1.引言 茶是以茶树(野茶树)的叶子加工而成的饮品。无论冷热,茶都是世界上最受欢迎的饮品之一。茶叶及茶树的化学组成是广泛的科研对象,譬如,丛医学、毒物学以及环境学的观点研究茶。 在过去的几年中,一些研究者对茶叶进行了分析,对多个品种的茶叶的重金 属(主要是铝)的测定做了相关报道1-9。研究者采用了不同的研究方法(包括,用悬浮进样ICP-AES测定铝、钡和锰元素9;这一方法的缺

4、点是对于微粒的尺寸很敏感)。然而,目前来看,尚且没有将超声波悬浮进样与ETAAS法相结合进行研究的报告。植物样本的微波消解目前而言在金属元素测定方面是一种完善而高效的技术。但是,在初步试验的基础上11。我们认为对于茶叶的测定过程不能简单地依靠文献数据,仍需要不断的优化。 本研究主要的分析任务是开发和评估定茶叶中或其他相似的植物样本基体中重金属污染物含量的灵敏、可靠、相对迅速的技术。 当前工作的首要目标是研究悬浮进样电热原子吸收光谱法(ETAAS)在测定茶叶中钡、铜、铁、铝、锌含量时的适用性。这些元素中,Pb是易挥发元素。常见的问题就是它在石墨炉原子化阶段的热稳定性。因此要采用STPF(恒温平台

5、石墨炉)这一概念,尤其是一种恰当的化学基体改性剂。其次,该测定是为了检验及优化密闭系统的微波消解成矿化技术。在该研究中未使用高氯酸,因其较危险。消解后的茶叶样本采用电感耦合等离子体原子发射光谱法进行分析。 2.实验 2.1仪器 测量采用了PE公司的5100ZL塞曼光谱石墨炉原子吸收分光光度仪HGA-600电热原子化器以及AS-60自动进样器(所有仪器来自Perkin-Elmer, Norwalk, CT)。采用高强度Intensitron类型的空心阴极灯。所有实验采用的都是拥有石墨图层的石墨管(Perkin-Elmer, No.B010-9322)以及石墨平台(Perkin-Elmer, No

6、.B010-9324)。300ml.min-1l流量以(5N纯度)的氩气作为净化气体,但是原子化阶段除外(停止排除铁和锌)。采用电子天平梅特勒(Mettler, 产自瑞士)AT-201对样本秤重。在茶叶进样的同时采用USS-100(Perkin-Elmer)钛金属探测器,进行自动化超声波悬浮进样。分析测定基于原子吸收峰面积。电热原子吸收光谱法(ETAAS)的基本仪器及实验条件如表1所示。 对比测定过程中,将同步采用配有标准原子化系统(由Ryton生产的横流原子化器以及斯科特式的原子化室)的电感耦合等离子体原子发射光谱同步光谱仪 Optima 300DV(Perkin-Elmer)。光谱仪的主要

7、操作条件及分析的波长如表2所示。 茶叶样本通过具有内部压力和温度控制系统的微波炉MDS-2000(CEM, Matthews, NC)进行消解。该炉具有可调节功率(高达630w),1%的增量档,同时具有可编程的计时器。聚四氟乙烯管容量为100ml,并装有减压阀。消解过程中,容器内的温度及压力都可以调控、记录。 2.2 样本与试剂 该实验的研究样本为市面上买得到的某种茶(乌龙茶,特殊发酵,由台湾天仁茶业有限公司生产),以及某标准物质茶(国家标准物质茶叶GBW-07605,来自中国国家标准物质研究中心)。 表1 ETAAS测定中茶叶所含的钡、铜、铁、铝、锌的基本仪器参数 使用镍+磷酸盐改性剂。 实

8、验中的所有酸,如:硝酸、盐酸以及特殊纯度的氢氟酸都来自德国达姆施塔特市的E.Merk公司。钯中硝酸盐和硝酸盐磷铵改性剂以及特殊纯度的镍也来自德国的E.Merk公司。表面活性剂Triton-100 购自Fluka公司(瑞士)。单独的(供原子吸收分光光度法AAS使用)或者多样的元素(供电感耦合等离子体 原子发射光谱法ICP-AES使用),包括钡、铜、铁、铝、锌工作标准由1g1-1的储备溶液(Spectrosol, E.Merck, 德国)提供。所有的进一步稀释均采用双蒸馏水及去离子水。所有标准液都加酸酸化,以保持适当酸度。 2.3磨浆准备,取样 首先,将实验分析用的样品乌龙茶放入混合研磨器 MM-

9、2000(K.F.Retsch,德国)中研磨20分钟,同时使用液氮冷却系统。观察表明,使用冷却系统可以提高研磨的效率。利用扫描电子显微镜(SEM)和光学显微镜对研磨的样本的粒径进行研究。据验证,平均粒径<60m。标准物质茶叶没有进行研磨。进样之前,摇动装此样品的瓶子五到六次。 所有粉碎茶叶进样通过平衡法(在2.5ml 聚乙烯容器中)将浓度范围集中在0.4-3.6%m.m-1。以0.04或 4.0% v/v HNO3以及 0.005% (最终浓度表面活性剂)的 X-100 Triton作为进样准备的液体介质。在电热原子化器采样之前,将同一容器内的超声波搅拌器 (以每15秒约55%的超声波探

10、头功率)内的容器放入自动进样器中。对于同一的茶叶样本,单独进三个样,重复三次。 2.4微波辅助消解 通常,0.3克的茶叶样品放入Teflon PFA容器,加入适当体积的浓酸后紧闭消解管。对纯硝酸和三个混酸组合进行了测试。例如,硝酸和氢氟酸的组合(9+1 ml);硝酸与盐酸的组合(9+1 ml, 9+2 ml 和 9+3 ml);硝酸、氢氟酸和盐酸的组合(9+1+1ml, 8+2+1ml, 7.5+2.5+1ml)。对微波炉加热程序进行优化,尽可能缩短时间。最终,对样本的微波炉处理在10分钟达到最大功率(630w),记录的压力达到最大值 180 psi。样本在微波处理约30分钟后冷却。然后将其移

11、入容量瓶,注入高纯度的水定容至20或50ml。 表2 : ICP-AES光谱仪的运作环境以及波长分析 测定接近检测限 2.5 ICP-AES测定 测定条件优化基于信噪比。ICP-AES光谱仪的主要运行环境如表2所示。除Pb测量外,仅使用了等离子径向观测。采用了单一背景修正。分析结果是基于酸化的多元素标准,利用直线校准图计算出的。 对于三个独立的消解实验,所有检测都需要重复3到5次。 3.结果和讨论 3.1优化电热原子吸收光谱(ETAAS)检测 使用水溶液及粉碎样本对所有实验研究的元素的灰化和原子化温度进行优化。选择的温度如表1所示。原子化之前采用最大的加热功率,原子化使用石墨平台。在钡和铅的测

12、定程序控温中,包含降温这一步骤。 除上述提到的优化之外,还需要观测铅的流失。研究茶叶进样时,也要观察原子化峰值的改变及外观时间的改变。为了取得良好的分析回收率,使用化学基体改性剂很有必要。混合改性剂含有硝酸镍和磷铵(取自12,作者用它测定水中的铅量)。实验证明,该改性剂( 100 g ml 1 Ni(NO3)2 + 10 mg ml 1 NH4H2PO4) 对于温度达1000的铅稳定。同时,使用化学基体改性剂(仅钯硝酸盐)对于钡的测试也颇有益处,尤其在提高(均衡)分析的峰值时。还可以观察到一个较好的平均特征质量(7.6而不是8.4 pg/0.0044 As)。实验发现,最佳浓度的钯改性剂为2.

13、0g。茶叶进样前加入混合改性剂或石墨炉加入单独的化学改性剂,那么就会得到几乎相同的峰形和分析结果(Pb、Ba)。对于铜、铁、锌的测定,不必加入额外的化学基体改性剂。 表3:悬浮液中的金属比例(取乌龙茶样本,悬浮液2.5% m m-1) 液相浓度由电热原子吸收光谱(ETAAS)测定的(经过12分钟的粉碎离心) 同时还观察了超声波的搅拌时间对于分析信号重复性的影响。然而,超声时间在1535秒的范围内,重复性(RSD)几乎相同,因此在分析过程中选择了最短的测定时间(15秒)。 3.2金属分配 测定金属的固态和液体的分配通常(锌除外)是相似的(如表3所示),分别在0.04和4%的HNO3解决方案之间。

14、在这些介质中进样准备的重复性分析结果 几乎也是相同的。这一结果表明,尽管pH值有变化,但是缺乏更重要的进样结块。准备0.04%的进样介质会更方便,因为可以对使用时间稍微长一些的热解涂层石墨平台进行观察。淋洗的液相铅含量(对饮茶者而言是件幸事)很小(低于5%),几乎不依赖于硝酸的浓度(0.04vs 4%酸)。以前曾报导过以相似的方式对于其他植物的该元素采用类似的进样准备。例如对卷心菜叶和卷心菜根的进样 13。可提取的钡、锌和铁的质量为中等。另一方面,无论是在更为稀释或是更为浓缩的酸性介质中,几乎所有的铜都可以提取出用作观察。 3.3微波消解 最初使用的是浓硝酸,但该方法并不很有效(参见7)。回收

15、率也不理想。对于三种酸的组合(例如,硝酸+氢氟酸,硝酸+盐酸,硝酸+氢氟酸+盐酸)的研究则以更细致的方式进行。试验表明,三种酸组合的效果比两种酸的组合更有效,回收率(以标准物质核定)更高。 报告表明,即使仅有10分钟(温度达到了180)的消解也能获得清澈的(有时有一点点发黄)溶液。图1显示了样品处理过程中温度及压力的变化。微波消解时间超过10分钟没有变化。除铁之外,含有HNO3+HCI+HF(比例:9+1+1ml) 混合以参考物质为参照的分析结果有高的回收率,通常范围在1006%。在该实验中,仅对回收率范围在8688.5%内进行观察。同样的酸以7.5+2.5+1ml(HNO3+HCI+HF)的

16、比例可以提高铁的回收率,即:达到93.9%。利用各种酸微波消解后铁和钡(作为最不会受消解介质变化影响的元素)的平均回收率如图表图2所示。 图1:微波消解的时间与微波容器内部的温度和/或压力的关系。 3.4分析结果 积分吸光用以量化原子信号和计算测验样本中金属浓度。采用ETAAS测定钡 时,使用标准加入法。因为可以观察出某些分析信号值的基体效应。对于其他的待分析项以标准溶液为基础的校准曲线就足够了。以钡、铜、铁、铝、锌的光谱共振线(表1所示)分析获得的特征质量分别为7.6,9.0,6.2,14和0.6pg/0.0044。铁的标准回收率(对于进样约2%mm-1)为93.8%,而铜是102.5%。E

17、TAAS进样结果的整体再现是通过五次复制计算的值,每个样本都符合这一分析技术(RSD<9.8%)。三种不同浓度的进样在某采样浓度内实现九次再现(RSD在1.8和4.2%之间)。 电感耦合等离子体原子发射光谱(ICP-AES)校准曲线的线性度(相关系数的范围在0.99991.0000)很好。对于每个样本进行五次复制,ICP-AES的整体RSD计算结果<7.0%。液体进样电感耦合等离子体原子发射光谱的钡、铜、铁、锌的分析测定回收率分别为96、95、93.5、和101%。 较为麻烦的是分析测定铅。它在茶叶样本中所占的比例相对比较低,直接使用ICP-AES技术不是很奏效(即使是使用现代化的

18、电感耦合等离子体原子发射光谱ICP-AES设备)。我们利用电感耦合等离子体原子发射光谱(ICP-AES)技术对真的茶叶样本(乌龙茶)进行了横向及纵向的观察,但分析结果并不乐观。所以,铅的测定采用悬浮进样的电热原子吸收光谱(ETAAS)法更好一些。 图2:采用不同消解介质微波消解后,ICP-AES测定铁和钡的平均回收率。 通过电热原子吸收光谱(ETAAS)悬浮进样和电感耦合等离子体原子发射光谱(ICP-AES)液体样本对真正的茶叶样本的分析结果如表4所示。两个结果非常 相似(最大的不同是约为5%)。两项测验的结果和分析技术的比较完全符合认证值(表5)。与参考物质相比,真正的茶叶样品的钡和铝的含量

19、升高可能是由于植物从污染的土壤中吸收了这些元素。 表4:乌龙茶样本中金属元素的检测结果 表5:合格标准参考物质(茶渣GBW 07605)中的金属测定结果。 4.结论 悬浮进样电热原子吸收光谱(ETAAS)分析重现性稍微有些不足,但是,总的来看,这两种分析方法的结果都是可靠的、回收率也很高。 电热原子吸收光谱法(ETAAS)可以成功用于茶叶样本中简单、迅速、可重现单一金属元素的测定。而密闭系统中微波消解同电感耦合等离子原子发射光谱分析法(ICP-AES)技术则更适用于速度较快的多种元素测定,除去茶叶中的某些痕量或超痕量元素,例如:铅。 致谢 本文作者之一(Jerzy Mierzwa)非常感谢台湾

20、科学理事会(台北,台湾)的财政支持。 参考文献 1 N.S. Saleh, J. Radioanal. Chem. 74 (1982) 191. 2 S. Ahmad, M.S. Chaudhary, A. Mannan, I.H. Qureshi, J.Radioanal. Chem. 78 (1983) 375. 3 I. Kojima, T. Uchida, C. Iida, Anal. Sci. 4 (1988) 211. 4 K.R. Koch, M.A.B. Pougnet, S.D. De Villiers, Analyst 114 (1989) 911. 5 C.F. Wang

21、, C.H. Ke, J.Y. Yang, J. Radioanal. Chem.173 (1993) 195. 6 R.G. Sud, R. Prasad, M. Bhargava, J. Sci. Food Agric. 67 (1995) 341. 7 K. Lamble, S.J. Hill, Analyst 120 (1995) 413. 8 R. Liu, A. Zhang, D. Liu, S. Wang, Analyst 120 (1995) 1195. 9 C.K. Manickum, A.A. Verbeek, J. Anal. At. Spectrom. 9 (1994)

22、 227. 10 H.M. Kingston, L.B. Jassie, Introduction to Microwave Sample Preparation. Theory and Practice, American Chemical Society, Washington, DC, 1988. 11 J. Mierzwa, Y.C. Sun, M.H. Yang, Asianalysis IV Conference,Fukuoka, Japan, 1997 (abstract 2P10). 12 Y. Xu, Y. Liang, J. Anal. At. Spectrom. 12 (1997) 471. 13 R. Dobrowolski, J. Mierzwa, Fresenius J. Anal. Chem.346 (1993) 1058.

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1