ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:399.94KB ,
资源ID:22761196      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/22761196.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(带阻滤波器的设计与仿真Word文档格式.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

带阻滤波器的设计与仿真Word文档格式.docx

1、一、引言 带阻滤波器是指能通过大多数频率分量、但将某些范围的频率分量衰减到极低水平的滤波器,与带通滤波器的概念相对。要想得到带阻滤波器,只需将输入电压同时作用于低通滤波器和高通滤波器,再将两个电路的输出电压求和,就可以实现。从这个概念,本文利用理查德变换和科洛达规则的原理进行设计。二、微带短截线带阻滤波器的理论基础 当频率不高时,滤波器主要是由集总元件电感和电容构成,但当频率高500Mz 时,滤波器通常由分布参数元件构成,这是由于两个原因造成的,其一是频率高时电感和电容应选的元件值小,由于寄生参数的影响,如此小的电感和电容已经不能再使用集总参数元件;其二是此时工作波长与滤波器元件的物理尺寸相近

2、,滤波器元件之间的距离不可忽视,需要考虑分布参数效应。我们这次设计采用短截线方法,将集总元件滤波器变换为分布参数滤波器,其中理查德变换用于将集总元件变换为传输段,科洛达规则可以将各滤波器元件分隔。 1.理查德变换 通过理查德变换,可以将集总元件的电感和电容用一段终端短路和终端开路的传输线等效。终端短路和终端开路传输线的输入阻抗具有纯电抗性,利用传输线的这一特性,可以实现集总元件到分布参数元件的变换。在传输线理论中,终端短路传输线的输入阻抗为: Zin=jZ0tanl=jZ0tan (1)式中 =l=l (2) 当传输线的长度l=0/8时 = (3)将式(3)代入式(1),可以得到 Z0=jXL

3、=jZ0tan() (4) = (5)称为归一化频率。终端短路的一段传输线可以等效为集总元件电感,等效关系为 jXL=jL=jZ0tan() =SZ0 (6) S=jtan() (7)称为理查德变换。 同样,终端开路的一段传输线可以等效为集总元件的电容。终端开路传输线的输入导纳为 jBC=jC=jY0tan()=SY0 (8)式中S = jtan()为理查德变换。 前面将电感和电容用一段传输线等效时,传输线的长度选择为t=/8,这样的选择有个好处,因为点f =f0时,有)=jl (9)这适合将集总元件低通滤波器原型转换为由传输线构成的低通滤波器,这时低通滤波器原型的电感值与终端短路传输线的归一

4、化特性阻抗值相等,低通滤波器原型的电容值与终端开路传输线的归一化特性导纳值相等。当传输线的长度t=/4时,这种选择适合将集总元件低通滤波器原型转换为由传输线构成的带阻滤波器。所以我们在做设计时用的传输线的长度为t=/4。2.科洛达规则 科洛达规则是利用附加的传输线段,得到在实际上更容易实现的滤波器。利用科洛达规则既可以将串联短截线变换为并联短截线,又可以将短截线在物理上分开。附加的传输线段称为单位元件。3.ADS 简介 ADS(Advanced Design System)电子设计自动化软件为美国Agilent Technologies 公司的产品,该软件的功能包含时域电路模拟(SPICEli

5、ke Simulation)、频域电路模拟(Harmonic Balance Linear Analysis)、电磁模拟(EM Simulation)、通信系统模拟(Communication SystemSimulation)、数字信号处理设计(DSP)等。此外和多家芯 片厂商合作建立ADS Design Kit及Model File供设计人员使用。使用者可以利用Design Kit及软件模拟功能进行通信系统的设计、规划与评估,以及MMICRFIC、类比与数位电路设计。除上述的设计模拟功能外,ADS也提供辅助设计功能,Design Guide是以范例及指令如方式示范电路或系统的设计规划流程,

6、而Simulation Wizard是以步骤式界面进行电路设计与分析。ADS还能提供与其他设计模拟软件(如SPICE、Mentor Graphics的ModelSim、Cadence的NC-Verilog、Mathworks的MATLAB等)做CoSimulation,加上丰富的元件应用模型库及量测验证仪器间的连接功能,将增加电路与系统设计的方便性、速度与精确性。它提供优秀的频率模式和混合模式电路仿真器,可以模拟整个通信信号通路,完成从电路到系统的各级仿真。它把广泛的经过验证的射频、混合信号和电磁设计工具集成到一个灵活的环境中。ADS采用自顶至底的设计和自底至顶的验证方法,将系统设计和验证时间

7、降到最少。它具有DSP、RF和EM协同仿真能力,从而能在系统级设计中高效率地分配和优化系统性能。完成系统建模后,就可用实际RE和DSP电路设计替代行为模型,评估它们对性能的影响。当任何一级仿真结果不理想时,都必须回到原理图中重新进行优化,并再次进行仿真,直到仿真结果满意为止,这样可以保证实际电路与仿真电路的一致性。ADS可以为电路设计者提供进行模拟、射频与微波等电路和通信系统设计的仿真分析方法,其提供的仿真分析方法大致可以分为时域仿真、频域仿真、系统仿真和电磁仿真。三、设计带阻滤波器1.各项参数设置 (1)设置微带线参数。在【Microstrip Substrate】对话框中进行设置,设置好后

8、在原理图中有:图1 MSUB参数(2)在微带线元件面板上,选择一个微带线MLIN,插入原理图的画图区。图2 MLIN参数(3)在画图区中选中微带线MLIN,再选择【tools】调出【LineCalc】计算窗口如图:图3 【LineCalc】计算窗口(4)在【LineCalc】计算窗口,设置:将频率Freq设置为6GHz将微带线的特性阻抗设置为70.7Ohm将微带线的长度相移设置为90度点击【Synthesize】按钮可计算出微带线的宽度W=1.458mm和微带线的长度L=8.547mm。(5)在【LineCalc】计算窗口,继续计算将频率Freq设置为6GHz将微带线的特性阻抗设置为50Ohm

9、(6)点击【Synthesize】按钮可计算出微带线的宽度W=2.647mm(7)在【LineCalc】计算窗口,设置:将频率Freq设置为6GHz将微带线的特性阻抗设置为170.7将微带线的长度相移设置为90度点击【Synthesize】按钮可计算出微带线的宽度W=0.093mm和微带线的长度L=9.133mm。(8)在【LineCalc】计算窗口,继续计算将频率Freq设置为6GHz将微带线的特性阻抗设置为60.4Ohm将微带线的长度相移设置为90度点击【Synthesize】按钮可计算出微带线的宽度W=1.940mm和微带线的长度L=8.455mm。(9)通过上述计算得到的数据,是微带短

10、截线带阻滤波器的尺寸。2.设计原理图(1)保留前面设置的微带线参数,删除原理图中的一个微带线MLIN。(2)在原理图的元件面板列表上,选择微带线【Tlines-Microstrip】元件面板上出现与微带线对应的元件图标。在微带线元件面板上,选择微带线MLIN,4次插入到原理图中,并做如下设置:图4 MLIN参数(3)在微带线元件面板选择微带线的T形结MTEE,3次插入到原理图中,并做如下设置:图5 MTEE参数(4)在微带线元件面板,选择终端开路的微带线MLOC,3次插入原理图中,并做如下设置:图6 终端开路的微带线MLOC参数(5)在S参数仿真元件面板上,选择负载终端Term,2次插入原理图

11、中,并让两个负载均接地。(6)应用连接工具,将MTEE,MLOC,Term和MLIN相连如下图:图7 原理图3.原理图仿真(1)对微带短截线带阻滤波器的原理图仿真,数据显示,结果如下:图8 仿真结果(2)对比设计指标发现此设计在多个方面存在不足,如:中心频率没有正好落在6GHz,M1和M2点的衰减又过大4.优化设计过程(1)由于图中曲线不满足技术指标,需要调整原理图,下面采用优化方法调整原理图。在优化仿真之前,先设置变量,然后再添加优化控件和目标控件。(2修改S参数仿真控件中微带线段的取值方式,将微带线段导体带的宽度W设置为变量。再对原理图中TL2和TL3进行设置如下: TL2的导体宽度设置为

12、W=x1mm TL3的导体宽度设置为W=x1mm(3)设置T形结Tee1,Tee2,Tee3如下(单位mm): Tee1设置为W1=2.647 W2=x1 W3=x2 Tee2设置为W1=x1 W2=x1 W3=x3 Tee3设置为W1=x1 W2=x2.647 W3=x2(4)设置终端开路的微带线MLOC如下: 微带线TL5的宽度设置为W=x2mm 微带线TL6的宽度设置为W=x3mm 微带线TL7的宽度设置为W=x2mm(5)在原理图的工具栏,选择变量【var】按钮,插入原理图中,双击VAR,打开【Variables and Equations】对话框,在对话框中分别对x1,x2,x3进行

13、设置其结果如下:图9 VAR参数(6)在原理图的元件面板列表上,选择优化元件【Optim/Stat./yield/DOE】项,在优化的元件面板上,选择优化控件Optim插入原理图的画图区,并选择目标控件Goal插入原理图的画图区,共4个。(7)双击Optim,打开【Nominal Optimization】窗口,在其中设置优化控件,设置优化控件的步骤如下: 选择随机Random优化方式,优化次数400次,其余保持默认状态。(8)分别设置Goal1,Goal2,Goal3,Goal4控件,结果如下:图10 GOAL参数(9)最终原理图如下:图11 优化后原理图(10)点击仿真【Simulate】图标,运行仿真,数据结果显示如下图:图11 优化后仿真结果四、结果分析 查看优化后的曲线图可知: 在5.5GHz处,S21的值为-2.001dB,在6GHz处,S21的值为-46dB,在6.6GHz处,S21的值为-2.256dB,这组数据比优化前的要好,达到了预期的设计目标。参考文献1 刘长军、黄卡玛、闫丽萍:射频通信电路设计,科学出版社2 陈晓文:电子线路课程设计M,电子工业出版社,2005年第1版3 殷际杰:微波技术与天线,电子工业出版社,2009年1月4 黄玉兰:射频电路理论与设计,人民邮电出版社,2008年10月5 毕满清:电子技术试验与课程设计M,机械工业出版社,2005年第3版

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1