1、在答题卡的图中画出裁剪线即可)6. 如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)7. 在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形记格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为S=ma+nb1,其中m,n为常数(1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;(2)利用(1)中的格点多边形确定m,
2、n的值8. 如图,ABC是等腰三角形,AB=AC,请你用尺规作图将ABC分成两个全等的三角形,并说明这两个三角形全等的理由(保留作图痕迹,不写作法)9. 图,图,图都是44的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1在图,图中已画出线段AB,在图中已画出点A按下列要求画图:(1)在图中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图中,以格点为顶点,AB为一边画一个正方形;(3)在图中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形10. 各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形如何计算它的面积?奥地利数学家皮克(GPic
3、k,18591942年)证明了格点多边形的面积公式S=a+b1,其中a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积如图,a=4,b=6,S=4+61=6(1)请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积(2)请在图乙中画一个格点三角形,使它的面积为,且每条边上除顶点外无其它格点(注:图甲、图乙在答题纸上)11. “综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度(1)用记号(a,b,c)(abc)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个
4、单位长度的一个三角形请列举出所有满足条件的三角形(2)用直尺和圆规作出三边满足abc的三角形(用给定的单位长度,不写作法,保留作图痕迹)12. 有公路l2同侧、l1异侧的两个城镇A、B,如图,电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A、B的距离必须相等,到两条公路l1、l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置(保留作图痕迹,不写作法)13. 两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何
5、处?请在图中,用尺规作图找出所有符合条件的点C(不写已知、求作、作法,只保留作图痕迹)14. 如图,两条公路OA和OB相交于O点,在AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置(要求:不写作法,保留作图痕迹,写出结论)15. 如图,在方格纸中,ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与ABC不全等但面积相等的三角形是(只需要填一个三角形)(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不
6、同的点,以所取得这三个点为顶点画三角形,求所画三角形与ABC面积相等的概率(用画树状图或列表格求解)16. 小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PCa,量出直线b与PC的夹角度数,即直线a,b所成角的度数(1)请写出这种做法的理由;(2)小明在此基础上又进行了如下操作和探究(如图3):以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;连结AD并延长交直线a于点B,请写出图3中所有与PAB相等的角,并说明理由;(3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的
7、平分线(画板内的部分),只要求作出图形,并保留作图痕迹17. 小明在做课本“目标与评定”中的一道题:如图1,直线a、b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?(1)请帮小明在图2的画板内画出你的测量方案图(简要说明画法过程); 说出该画法依据的定理(2)小明在此基础上进行了更深入的探究,想到两个操作:在图3的画板内,在直线a与直线b上各取一点,使这两点与直线a、b的交点构成等腰三角形(其中交点为顶角的顶点),画出该等腰三角形在画板内的部分在图3的画板内,作出“直线a、b所成的跑到画板外面去的角”的平分线(在画板内的部分),只要求作出图形,并保留作图痕迹请你帮小明完成
8、上面两个操作过程(必须要有方案图,所有的线不能画到画板外,只能画在画板内)18. 矩形ABCD的对角线AC,BD相交于点O,AC=4 ,BC=4,向矩形ABCD外作CDE,使CDE为等腰直角三角形,且点E不在边BC所在的直线上,请你画出图形,直接写出OE的长,并画出体现解法的辅助线19. 图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上(1)在图1中画出ABC(点C在小正方形的顶点上),使ABC为直角三角形(画一个即可);(2)在图2中画出ABD(点D在小正方形的顶点上),使ABD为等腰三角形(画一个即可)20. 图1、图2是两张形状
9、、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点(1)在图1中画出等腰直角三角形MON,使点N在格点上,且MON=90;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可)21. 【问题提出】用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?【问题探究】不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后
10、归纳、猜测得出结论【探究一】(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,显然能搭成一种等腰三角形所以,当n=3时,m=1(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形所以,当n=4时,m=0(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形所以,当n=5时,m=1(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和4根木棒
11、,则不能搭成三角形若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形所以,当n=6时,m=1综上所述,可得:表n3456m1【探究二】(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?(仿照上述探究方法,写出解答过程,并将结果填在表中)(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表中)表78910你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k1,4k,4k+1,4k+2,其中k是正整数,把结果填在表
12、中)表4k14k4k+14k+2【问题应用】:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(写出解答过程),其中面积最大的等腰三角形每腰用了根木棒(只填结果)22. 手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)23. 已知梯形ABCD,请使用无刻度直尺画图(1)在图1中画出一个与梯形ABCD面积相等,且以CD为边的三角形;(2)图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形24. 如
13、图,在所给方格纸中,每个小正方形边长都是1,标号为,的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲、图乙中的指定图形分割成三个三角形,使它们与标号为,的三个三角形分别对应全等(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD注:分割线画成实线25. 如图,ABC中,AB=AC,A=36,称满足此条件的三角形为黄金等腰三角形请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括ABC)(1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是度和度;(2)在图2中画2条线段,使图中有4个等腰三角形;(3)继
14、续按以上操作发现:在ABC中画n条线段,则图中有个等腰三角形,其中有个黄金等腰三角形26. 把一条12个单位长度的线段分成三条线段,其中一条线段成为4个单位长度,另两条线段长都是单位长度的整数倍(1)不同分段得到的三条线段能组成多少个不全等的三角形?用直尺和圆规作这些三角形(用给定的单位长度,不写作法,保留作图痕迹);(2)求出(1)中所作三角形外接圆的周长27. (1)如图1,RtABC中,B=90,AB=2BC,现以C为圆心、CB长为半径画弧交边AC于D,再以A为圆心、AD为半径画弧交边AB于E求证:(这个比值叫做AE与AB的黄金比)(2)如果一等腰三角形的底边与腰的比等于黄金比,那么这个
15、等腰三角形就叫做黄金三角形请你以图2中的线段AB为腰,用直尺和圆规,作一个黄金三角形ABC(注:直尺没有刻度!作图不要求写作法,但要求保留作图痕迹,并对作图中涉及到的点用字母进行标注)28. 在ABC中,AB=AC=5,BC=6,以AC为一边作正方形ACDE,过点D作DFBC交直线BC于点F,连接AF,请你画出图形,直接写出AF的长,并画出体现解法的辅助线29. 数学问题:计算(其中m,n都是正整数,且m2,n1)探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究探究一:第1次
16、分割,把正方形的面积二等分,其中阴影部分的面积为第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为第3次分割,把上次分割图中空白部分的面积继续二等分,;第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为,最后空白部分的面积是根据第n次分割图可得等式:=1探究二:第1次分割,把正方形的面积三等分,其中阴影部分的面积为第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为第3次分割,把上次分割图中空白部分的面积继续三等分,;第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为,两边同除以2,得=.探究三:(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空),所以,=拓广应用:30. 在校园文化建设活动中,需要裁剪一些菱形来美化教室现有平行四边形ABCD的邻边长分别为1,a(a1)的纸片,先剪去一个菱形,余下一个四边形,在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,依此类推,请画出剪三次后余下的四边形是菱形的裁剪线的各种示意图,并求出a的值
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1