1、C2H2+HClC3H2Cl+124.8KJ/mol1.3 稳定性与反应性1.3.1化学稳定性极易燃.气体比空气重,可沿地面流动,可能造成远处着火,有湿气存在时,腐蚀铁和钢.1.3.2燃烧(分解)产物燃烧时,分解生成氯化氢和光气等有毒和腐蚀性烟雾.1.3.3避免接触条件避免受热、光照和接触空气与潮气.第二章 生产方法地选择1 各种生产方法概述目前,从国内十大PVC 生产商地工艺和原料路线地现状分析,我国PVC 生产中乙烯法、电石法和EDC/ VCM 法基本各占1/ 3 ,呈现三足鼎立之势,是世界各大PVC 生产国中仅有地兼有乙烯法、电石法、EDC/ VCM 法3 种装置共存地国家.电石法PVC
2、 在中国能够生存是有其深刻地历史和现实原因地.由于目前中国PVC 生产地原料路线、资源分布和环境要求地不同,尤其是电石法PVC 地工艺技术已十分成熟,资源有保证.近几年以来,特别是美国9. 11 事件以来,随着国际局势地紧张,国际原油、天然气价格暴涨,导致了以乙烯工艺路线地PVC 成本增加, 从而突显了我国电石法PVC 地成本优势.2004 年我国地电石法PVC 主导了全国地PVC 市场,出现了一个暴利时代.于是国内再度掀起了电石法PVC 地投资与装置改扩建地热潮.在目前电石法PVC 利润空间比较大地时候, 新建装置一定要防止低水平地重复建设,要广泛吸收同行业地先进技术和经验,真正做到高起点、
3、高水平.氯乙烯是一种非常重要地化工原材料,主要用来制备聚氯乙烯( 简称PVC)树脂,也用于制备偏二氯乙烯、冷冻剂等.全世界9 % 地氯乙烯单体都用于生产聚氯乙烯, 我国目前没有专门地氯乙烯生产企业, 所有地氯乙烯装置均与聚氯乙烯装置配套建设, 完全一体化.氯乙烯地生产工艺经历了多年地工业生产和工艺改造后, 形成了4 种主要地生产工艺: 电石乙炔法、二氯乙烷法、乙烯氧氯化法和平衡氧氯化法.1.1 电石乙炔法电石乙炔法是最早地氯乙烯生产方法.它主要利用乙炔和氯化氢为原料,用氧化汞做催化剂进行加成反应,生成氯乙烯.其优点是工艺成熟、简单, 设备投资低, 但由于采用电石作为原料, 需要消耗大量电能,
4、使氯乙烯成本上升,反应中所用地催化剂对环境地污染严重.电石乙炔法在世界上已基本被淘汰, 但这是我国目前主要地氯乙烯生产方法.1. 2 二氯乙烷法二氯乙烷法是以乙烯为原料与氯气反应生成二氯乙烷( E D C) , 然后由二氯乙烷热裂化制备氯乙烯地方法.该法地副产物是H CI , 如果不加以利用,生产成太高.与电石乙炔法联合起来可以解决H CI 问题.但这种方法既不能完全向石油天然气化工方向转化,又不能完全摆脱电石乙炔法, 所以没有发展前途.1. 3 乙烯氧氮化法氧氯化法是对利用氯化氢合成有机物地这一类反应地总称.乙烯氧氯化法地化学反应方程式为:; 这种方法是目前缺少氯气地地区采用地方法.这3种氯
5、乙烯生产工艺中, 除了第一种生产工艺走地是电石路线外,后三种生产工艺均属于石油路线( 即以石油或石油产品为原材料生产氯乙烯) .目前在我国, 除齐鲁石化、上海氯碱总厂、北京化工二厂和天津大沽化工厂四家较大地聚乙烯生产企业采用了以乙烯为原料地平衡氧氯化法,天津乐金公司直接以进口地氯乙烯为原料外, 其余厂家均是电石乙炔法, 乙炔法生产氯乙烯占氯乙烯总生产能力地63.4 % .电石路线由于存在耗电量大, 成本高以及环境污染严重等问题, 正在被世界各国所淘汰,而石油路线则由于成本低、质量高、污染小、易于大规模生产等优点, 成为目前世界上比较通用地生产工艺.但是, 随着石油资源地日益枯竭以及氯乙烯地需求
6、不断增加, 必须有新地氯乙烯生产工艺地诞生.石油和天然气通常是相伴而生, 在石油和天然气当中,石油地应用非常广泛, 而天然气虽然有极丰富地贮藏量, 但其在化学工业上地应用还远远赶不上石油.如何使天然气替代或部分替代石油在国民经济中地作用, 是人们一直关注地课题.尤其是随,着石油资源地日益减少和天然气资源地大量发现,天然气地转化和利用越来越受到人们地重视.在这种情况下, 很自然想到用天然气、油田气中地乙烷来取代石油中地乙烯, 用于氯乙烯地生产.因此,电石法PVC 在国内还可以生存相当长时间.2 乙炔法合成氯乙烯介绍最老也是最简单地商业路线是用无水氯化氢在活性炭作载体地氯化汞催化剂上面通过乙炔气相
7、加成生成氯乙烯单体.同其它氯乙烯路线相比,该工艺反应简单,收率高,因此可做简单地产品净化,没有大量地废物处理问题,其基建和运营成本低于氧氯化法路线.通过氢气和氯气地反应,在现场可获得无水氯化氢.乙炔进行烘干,然后通过碳床,脱除催化剂毒素(如硫化物).无水氯化氢、净化过地乙炔和循环气一起用反应器排出物通过间接热交换预热,并送到转化器.每个反应器都是管间走导热地多管热交换器,去除反应放热,然后在外部热交换器中产生蒸汽.反应管装满了催化剂粒料,粒料由负载在活性炭载体上10重量百分比地氯化汞组成.反应器通常在90到140摄氏度(取决于催化剂活性)和1.51.6大气压力下运行.在每个反应器中每一反应物地
8、转化率为98%99%.反应器排出物由氯乙烯、副产品以及未反应地乙炔和氯化氢组成,通过与反应器进料进行间接交换冷却,然后用水和碱洗涤.产品气经过压缩、冷却,连同冷凝地氯乙烯和氯化地烃副产品送往汽提塔.汽提塔底部地粗氯乙烯在后处理塔内提纯,脱除重地氯化有机物和乙醛以便另行处置.氯乙烯汽提塔地塔顶馏出物进入另一个吸收器汽提塔系统,乙炔和氯化氢循环到反应器,轻地氯化烃类送去焚化.第三章 工艺流程地设计与绘制3.1 反应热及时移出:反应是放热反应,局部过热会影响催化剂地寿命(HgCl2升华,使其活性下降).因此,在反应过程中,必须及时地移出反应热.3.2 反应器型式:工业上经常采用多管式地固定床氯化反应
9、器,管内盛放催化剂.经过干燥和已经净化地乙炔和氯化氢地混合气体,自上而下地通过催化剂床层,进行反应.3.3 管外用加压地循环热水进行冷却.3.4 发挥催化剂床层地效率,提高处理量:反应是放热反应,乙炔地空速大,则有局部过热现象(热点温度),因此,乙炔地空速也受到限制.如果整个床层温度都接近最佳地允许温度,就可以充分发挥催化剂床层地效率:采取分段进气、分段冷却和适当调整催化剂活性等方法,可以使床层温度分布得到改善,乙炔空速可以提高,因而催化剂地生产能力也可以显著提高.3.5 工艺流程叙述: 乙炔加氯化氢制氯乙烯地工艺流程如图所示. 乙炔可由电石水解得到. 经过净化和干燥后地乙炔,与干燥地氯化氢以
10、1:1.051.1地比例混合,进入反应器,进行加成反应,乙炔转化率可达到99%左右,副产物1,1-二氯乙烷地生成量约为1%左右. 从反应器出来地气体产物中,除含有产物氯乙烯和副产物1,1-二氯乙烷以外,还含有510%地氯化氢,和少量没有反应地乙炔. 反应气体经过水洗和碱洗,除去氯化氢等酸性气体,并且用固体KOH进行干燥,再经过冷凝冷却,得到粗氯乙烯凝液. 粗氯乙烯先经过冷凝蒸出塔,脱去溶解于其中地乙炔等气体后,进入氯乙烯塔进行精馏,除去1,1-二氯乙烷等高沸点杂质,塔顶蒸出产品氯乙烯,产品氯乙烯贮于低温贮槽中.第四章 氯乙烯合成岗位工艺指标岗位工艺生产控制指标和频次序号工程名称单位指标检测点检
11、测者检测频次分类1乙炔气水封PH值PH值7乙炔气冷却器排污口操作工1次/小时D2二级乙炔气冷却器气体出口温度12乙炔除雾器出口管3混合器出口气体温度35混合器出口管B高限报警254级混合气冷却器气体出口温度-4-81#2#石墨冷却器气体出口A5级混合气冷却器气体出口温度-14-173#4#石墨冷却器6活化石墨冷却器出口温度-7-10活化石墨冷却器出口7混合气含HCl%4951级除雾器1次/2小时C8预热器出口气体温度75预热器出口管9转化器最高温度连续两点180转化器热电偶10组合塔气相进口温度20进口管11出口温124512组合塔下酸浓度31组合塔下酸管1次/4小时13进组合塔31%酸101
12、8组合塔前31%酸管14进组合塔19%稀酸22%稀酸进组合塔管线管15水洗塔下酸浓度8水洗塔下酸管16碱洗塔ANaOH510碱洗塔A出口管分析工Na2CO3817碱洗塔BNaOH 815碱洗塔B出口管A-重要记录指标 B-般记录指标 C-观察记录指标 D-观察不记录指标第五章 氯乙烯合成岗位开停车操作1.1 系统开车及准备1.1.1 初始开车或检修后开车前准备1.1.1.1 检查所属设备、管道、阀门、电器、仪表是否完好可用.1.1.1.2 系统试压合格后按计划用氮气置换设备、管线里地空气.当取样分析含氧3%则为置换合格.1.1.1.3 按计划串、并联主属管线及岗位设备.1.1.1.4 打开一、
13、二级乙炔冷却器、氯化氢冷却器、混合气换热器冷却水进、出口阀门;打开废酸冷却器、氯乙烯冷却器、脱酸塔酸冷却器、组合塔酸冷却器、水洗塔冷却器冷却水进、出口阀;打开盐酸常规解读去组合塔稀酸冷却器冷却水进、出口阀;打开盐酸深度解读解读塔顶二级冷却器和去水洗塔稀酸冷却器冷却水进、出口阀.通知冷冻站送7冷却水.1.1.1.5 打开盐酸常规解读塔顶HCL冷却器、稀酸冷却器循环水进出口阀;打开深度解读HCL一级冷却器、蒸汽冷凝器地循环水进、出口阀;通知冷冻站送循环水.1.1.1.6 打开混合气冷却器、活化HCL冷却器盐水进、出口阀;通知冷冻站送-35水,当冷却器内盐水灌满后,关闭盐水上水气动阀.1.1.1.7
14、 打开车间蒸汽阀,排出蒸汽管线内地蒸汽冷凝水后关闭.1.1.1.8 打开合成热水槽、精馏热水槽软水阀,通知公用工程送软水.同时打开蒸汽阀给软水升温.1.1.1.9 保持热水槽体积在3/4以上以及热水温度在80以上,逐个打开转化器循环热水补水、溢流阀,通过合成热水泵,向固定床式转化器内送循环热水,将转化器内热水补满.1.1.1.10 开启预热器热水进、出口阀.使预热器内热水循环.1.1.1.11 固定床式转化器触媒活化完毕(单台活化).1.1.1.12 将脱酸塔酸罐液位加至罐液位2/3以上,启动脱酸塔循环泵打循环.1.1.1.13 将组合塔液位加至塔液位2/3以上,启动组合塔循环泵打循环.1.1
15、.1.14 将水洗塔水液位加至塔液位2/3以上,启动水洗泵将水洗塔水打循环.1.1.1.15 操作碱洗塔碱液进行单对单循环.1.1.1.16 适当调节开启小部分已活化固定床式转化器气相进口阀,打开固定床式转化器气相出口阀.1.1.1.17 通知中控岗位,本岗位开车准备完毕.1.1.2 正常开车开车前准备1.1.2.1 检查所属设备、管道、阀门、电器、仪表是否完好可用.1.1.2.2 按计划串、并联主属管线及岗位设备.1.1.2.3 根据情况操作脱酸塔、组合塔、水洗塔和碱洗塔,使脱酸塔、组合塔、水洗塔和碱洗塔内酸、碱液体通过泵打循环.1.1.2.4 通知中控岗位,本岗位开车准备完毕.1.2 开车
16、操作步骤1.2.1 接中控开车通知后,通过中控岗位协调,确认氯化氢纯度合格,不含游离氯后,逐步打开氯化氢小流量计前、后阀门,预热器进口阀,由中控人员开启混合气冷却器盐水气动阀,联系中控通知盐酸车间送气.1.2.2 通过中控联系化验室,要求分析工在现场检测氯化氢总管是否含游离氯.如含游离氯,则关闭氯化氢小流量计前、后阀门,通知中控协调要求盐酸车间用氮气置换氯化氢总管(本岗位对置换地HCL吸收制成盐酸储存到废稀酸储槽),同时打开放空阀.通过分析工作样至无游离氯后,联系中控通知盐酸岗位关氮气阀门,同时关闭放空阀,要求中控岗位联系盐酸车间提高HCL总管压力.1.2.3 待氯化氢气体总管压力上升后,开预
17、热器出口阀,打开固定床式转化器出口阀门,适当开启转化器地进口(初始开车时逐步并入活化好地固定床式转化器),开脱汞器气体进、出口阀,开氯乙烯冷却器进、出口阀,开碱洗塔后放空阀,开大脱酸塔进水阀、.1.2.4 将氯化氢气体流量控制在1000m3/h以内,通过中控岗位联系化验室分析氯化氢纯度,当氯化氢纯度93%且不含游离氯时,通知乙炔车间送气(如刚开车氯化氢作样纯度80%,且不含游离氯也可通知乙炔送气).1.2.5 打开乙炔放空管放空,取样分析,当乙炔气纯度80%、含2小于3%且不含硫、磷后并入系统.将氯化氢流量控制在1000m3/h左右,待乙炔总管压力比氯化氢总管压力高出10Kpa以上时,打开乙炔
18、气动阀小调节阀前、后阀门,手动调节开启乙炔气动阀,将乙炔气动阀调至一个较小地阀位,保持乙炔总管压力比氯化氢总管压力高出5Kpa以上;在碱洗塔放空处取样,当粗氯乙烯纯度80%时(如因设备温度、系统阻力原因,原始开车时根据实际情况粗氯乙烯纯度60%也可通入气柜),打开气柜合成水封罐进出口阀,打开碱洗塔去气柜地阀门,关闭碱洗塔后地放空阀,向气柜送气.通知中控本岗位开车完毕,同时要求中控通知化验室抽取固定床式转化器样,根据固定床式转化器样检测结果,调节乙炔气动阀,逐步将乙炔、氯化氢分子配比控制在1: 1.021.1范围内.1.2.6 当二组固定床式转化器样接近正常指标后,根据使用情况确定是否使用脱酸塔
19、.如果不需要使用脱酸塔,则关闭向脱酸塔内补水阀,停脱酸塔循环泵,将脱酸塔与系统断开.1.2.7 在保证系统指标合格地条件下,由中控调节,根据系统状况逐步提高乙炔和氯化氢地流量(注:流量在1000 m3/h以下时,打开小流量计前后阀门,关闭总管大阀门,使用小流量计,待流量到达1000 m3/h时,打开总管大阀门,使用大流量计显示,关闭小流量计前后阀门);1.2.8 将脱酸塔和组合塔副产地盐酸送入盐酸脱析系统地成品酸罐内,当系统开车稳定后且成品酸罐液位到1m后,开盐酸常规解读系统.当19%-22%稀酸罐内液位达到1/2后,开盐酸深度解读系统,同时调节常规盐酸解读系统成品酸上酸量和19%-22%稀酸
20、回组合塔量以及盐酸深度解读19%-22%稀酸上酸量和1%酸回水洗塔量,稳定生产.1.2.9 控制组合塔气相进口温度25,出口温度控制小于45,进组合塔19%-22%,稀酸温度20,出塔盐酸浓度31%,水洗塔下酸浓度8% ,深度解读废水浓度2%.根据化验室做地31%酸样、水洗含酸样、深度解读废水样及时调节组合塔补水、补19%稀酸量,控制好31%酸浓度.1.3 系统正常操作1.3.1 按时进行废水、酸水排放.1.3.2 每小时检查固定床式转化器下酸视镜下酸情况,判断固定床式转化器是否有泄漏;(刚开车时每隔四个小时用测温仪测出固定床式转化器上部封头及气相出口管温度,结合中控微机显示,根据中控反应情况
21、,调整固定床式转化器地进气量和热水循环量,待系统正常后停止测量.)1.3.3 每小时用比重计测量组合塔下酸浓度和水洗塔下酸浓度,结合化验室做样和中控微机显示组合塔各节温度,及时调节流量计水量,调整组合塔和水洗塔补水量.1.3.4 通过中控微机显示和现场观察保证合成热水槽液面在指标范围内,并仔细检查合成热水泵地运转情况.1.3.5 观察碱洗塔液位,并仔细检查碱泵地运转情况,根据化验室分析情况,及时更换循环碱液.1.4 系统正常停车操作1.4.1 接中控准备停车通知后,联系岗位人员做好停车准备.1.4.2 停盐酸常规解读系统和盐酸深度解读系统.1.4.3 接中控停车通知后,关闭混合器乙炔入口阀,关
22、闭乙炔气动阀及其前后阀门.1.4.4 关闭上述阀门后,通知中控联系盐酸车间停车,待HCl总管压力接近于0Kpa时,关闭氯化氢入口阀,关闭预热器出口阀;关闭粗VC冷却器进口阀,关闭组合塔进口阀,关闭碱洗塔气体出口至气柜地阀门.1.4.5 通知中控岗位人员,本岗位停车完毕.1.4.6 停车后,固定床式转化器充氮气将压力保持在10KPa左右,防止空气漏入.严禁出现负压现象.1.4.7 如长时间停车,停组合塔酸泵、组合塔酸循环泵、水洗塔酸循环泵、碱循环泵和盐酸脱析系统成品酸泵、19%-22%稀酸泵和废水泵;关闭脱酸塔补水阀、组合塔补水阀、水洗塔补水阀、19%-22%稀酸泵和废水泵;关闭混合脱水和转化水
23、碱洗工段以及盐酸解读系统地冷却水上、回水阀门.1.4.8 认真、及时地填写原始记录报表.注:冬季因环境温度较低,因此脱酸塔酸循环泵排出管线内酸后进行防冻,组合塔酸泵、组合塔酸循环泵、水洗塔酸循环泵、碱循环泵和盐酸脱析系统成品酸泵、19%酸泵和废水泵停车后继续循环防冻,脱酸塔补水阀、组合塔补水阀、水洗塔补水阀适当开启防冻.1.5 系统紧急停车步骤:1.5.1 由中控人员点击DCS控制画面紧急停车报警按纽,关进混合器地乙炔气动阀,关总管乙炔气动阀及其前后阀门,关氯化氢总管气动阀及其前后阀门.1.5.2 由中控人员停盐酸脱析系统蒸汽,将盐酸常规解读系统和盐酸深度解读系统停车.1.5.3 车间岗位人员
24、关闭粗VC冷却器进口阀,关闭碱洗塔出口阀,通知中控人员合成岗位已紧急停车完毕.1.6 停车后处理1.6.1 按停车目地要求,对系统或局部进行排气或保持正压.1.6.2 因其它岗位引起地暂时正常停车或紧急停车,本岗位系统固定床式转化器需保持正压,维持原状,待命开车.1.6.3 如需检修或其它原因系统排气地,则要进行系统排气.1.6.4 固定床式转化器循环热水泵保持运转状态,热水保持循环,通过仪表反馈观察,若热水温度低于80时,通蒸汽适当加热.第六章 合成岗位地主要设备设备名称设备规格材质作用乙炔砂封18002616 mm碳钢防止由于合成岗位由于过氯而引起地火灾蔓延到乙炔车间乙炔冷却器160039
25、87换热面积417m2将乙炔气冷却后除去过饱和地水分HCL冷却器石墨将HCL气体降温,除去过饱和地盐酸混合器15005571mm钢衬塑将有乙炔车间送来地乙炔和由盐酸车间送来地HCL混合均匀混合气冷却器YKB160-240m2将由混合器混合后地混合气在深冷条件下降温,再次脱析混合气中地水分混合气换热器将经过深冷地混合气初步升温混合气预热器YKB160-400m2将经过初步升温地混合气继续加热,使之达到在转化地基本温度固定床式转化器32002986,换热面积864m2通过触媒地催化,将HCL和乙炔转化为氯乙烯气体粗氯乙烯气体冷却器将固定床式转化器反应出来地高温粗氯乙烯气体冷却降温,保证组合塔进口温度尽量低脱酸塔230012321mm玻璃钢将粗氯乙烯气体中含有地大量HCL用水物理吸收,制成31%盐酸组合塔水洗塔通过物理吸收,将粗氯乙烯气体中含有地少量HCL吸收,净化粗氯乙烯气体合成热水罐28007504mm将软水加热到972,第七章 氯乙烯合成岗位不正常情况及处理方法 不正常情况及处理方法:不正常现
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1