1、C:m,若am时,满足a,a,但是不正确,所以选D.(2)若l,al,a,a,则a,a,故排除A.若l,a,al,则a,故排除B.若l,a,al,b,bl,则a,b,故排除C.故选D.思维升华解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理进行判断,必要时可以利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全引用到立体几何中设m、n是不同的直线,、是不同的平面,有以下四个命题:若,m,则m若m,n,则mn若m,mn,则n若n,n,则其中真命题的序号为()A BC D答案D解析若,
2、m,则m与可以是直线与平面的所有关系,所以错误;若m,n,则mn,所以正确;若m,mn,则n或n,所以错误;若n,n,则,所以正确故选D.热点二平行、垂直关系的证明例2如图,在四棱锥PABCD中,ABCD,ABAD,CD2AB,平面PAD底面ABCD,PAAD,E和F分别是CD和PC的中点,求证:(1)PA底面ABCD;(2)BE平面PAD;(3)平面BEF平面PCD.思维启迪(1)利用平面PAD底面ABCD的性质,得线面垂直;(2)BEAD易证;(3)EF是CPD的中位线证明(1)因为平面PAD底面ABCD,且PA垂直于这两个平面的交线AD,所以PA底面ABCD.(2)因为ABCD,CD2A
3、B,E为CD的中点,所以ABDE,且ABDE.所以四边形ABED为平行四边形所以BEAD.又因为BE平面PAD,AD平面PAD,所以BE平面PAD.(3)因为ABAD,而且ABED为平行四边形所以BECD,ADCD,由(1)知PA底面ABCD.所以PACD.所以CD平面PAD.所以CDPD.因为E和F分别是CD和PC的中点,所以PDEF.所以CDEF.所以CD平面BEF.又CD平面PCD,所以平面BEF平面PCD.思维升华垂直、平行关系证明中应用转化与化归思想的常见类型(1)证明线面、面面平行,需转化为证明线线平行(2)证明线面垂直,需转化为证明线线垂直(3)证明线线垂直,需转化为证明线面垂直
4、(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直如图所示,已知AB平面ACD,DE平面ACD,ACD为等边三角形,ADDE2AB,F为CD的中点求证:(1)AF平面BCE;(2)平面BCE平面CDE.证明(1)如图,取CE的中点G,连接FG,BG.F为CD的中点,GFDE且GFDE.AB平面ACD,DE平面ACD,ABDE,GFAB.又ABDE,GFAB.四边形GFAB为平行四边形,则AFBG.AF平面BCE,BG平面BCE,AF平面BCE.(2)ACD为等边三角形,F为CD的中点,AFCD.DE平面ACD,AF平面ACD,DEAF.又CDDED,AF平面CDE.BGAF,BG
5、平面CDE.BG平面BCE,平面BCE平面CDE.热点三图形的折叠问题例3如图(1),在RtABC中,C90,D,E分别为AC,AB的中点,点F为线段CD上的一点,将ADE沿DE折起到A1DE的位置,使A1FCD,如图(2)(1)求证:DE平面A1CB;(2)求证:A1FBE;(3)线段A1B上是否存在点Q,使A1C平面DEQ?请说明理由思维启迪折叠问题要注意在折叠过程中,哪些量变化了,哪些量没有变化第(1)问证明线面平行,可以证明DEBC;第(2)问证明线线垂直转化为证明线面垂直,即证明A1F平面BCDE;第(3)问取A1B的中点Q,再证明A1C平面DEQ.(1)证明因为D,E分别为AC,A
6、B的中点,所以DEBC.又因为DE平面A1CB,BC平面A1CB,所以DE平面A1CB.(2)证明由图(1)得ACBC且DEBC,所以DEAC.所以DEA1D,DECD.所以DE平面A1DC.而A1F平面A1DC,所以DEA1F.又因为A1FCD,所以A1F平面BCDE,又BE平面BCDE,所以A1FBE.(3)解线段A1B上存在点Q,使A1C平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQBC.又因为DEBC,所以DEPQ.所以平面DEQ即为平面DEP.由(2)知,DE平面A1DC,所以DEA1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1CDP.所以A1C平
7、面DEP.从而A1C平面DEQ.故线段A1B上存在点Q,使得A1C平面DEQ.思维升华(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量一般情况下,折线同一侧线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形如图(1),已知梯形ABCD中,ADBC,BAD,ABBC2AD4,E,F分别是AB,CD上的点,EFBC,AEx.沿EF将梯形ABCD翻折,使平面AEFD平面EBCF(如图(2)所示),G是BC的中点(1)当x2时,求证:BDEG;(2)当x变化时,求三棱锥DBCF
8、的体积f(x)的函数式(1)证明作DHEF,垂足为H,连接BH,GH,因为平面AEFD平面EBCF,交线为EF,DH平面AEFD,所以DH平面EBCF,又EG平面EBCF,故EGDH.因为EHADBCBG2,BE2,EFBC,EBC90,所以四边形BGHE为正方形,故EGBH.又BH,DH平面DBH,且BHDHH,故EG平面DBH.又BD平面DBH,故EGBD.(2)解因为AEEF,平面AEFD平面EBCF,交线为EF,AE平面AEFD,所以AE平面EBCF.由(1)知,DH平面EBCF,故AEDH,所以四边形AEHD是矩形,DHAE,故以B,F,C,D为顶点的三棱锥DBCF的高DHAEx.又SBCFBCBE4(4x)82x,所以三棱锥DBCF的体积f(x)SBFCDHAE(82x)xx2x(0xAC,所以符合要求的点G不存在13.如图,在平行四边形ABCD中,AB2BC4,ABC120,E,M分别为AB,DE的中点,将ADE沿直线DE翻折成
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1