ImageVerifierCode 换一换
格式:DOCX , 页数:20 ,大小:418.05KB ,
资源ID:22614562      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/22614562.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(时域和频域特征提取Matlab编程实例Word文档下载推荐.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

时域和频域特征提取Matlab编程实例Word文档下载推荐.docx

1、 C=脉冲指标l,m=1 I=裕度指标l,m=1/2 L=峭度指标 K=式中为信号标准差2.2 相关分析方法以及应用所谓相关,就是指变量之间的线性关系,它是一个非常重要的概念。对于确定性信号,两个变量之间可以用函数关系来描述,两者一一对应并为确定的数值。而两个随即变量之间不具有确定的关系。但是,如果这两个变量之间存在着某种不确定但却有着表征其特性的近似关系,这两个变量之间会有一定的线性关系。这时,对于一个随机机械信号,可以采用相关性函数来描述其在不同时间的幅值变化相关程度。2.2.1 自相关函数的概念和性质 x(t)是各态历经随机过程的一个样本函数,x(t+ )是x(t)时移 后的样本(图2.

2、6),把相关系数 x(t)x(t+ )简写为 x( ),那么就有: 图2.6 波形图若用Rx( )表示自相关函数,其定义为:信号的性质不同,自相关函数有不同的表达形式。如对周期信号(功率信号):非周期信号(能量信号):图2.7给出了自相关函数具有的性质。正弦函数的自相关函数是一个余弦函数,在=0时具有最大值。它保留了幅值信息和频率信息,但丢失了原正弦函数中的初始相位信息。2.3 Matlab编程实验结果2.3.1 构造加噪周期信号,时域特征分析,自相关函数特性的验证,(程序1)图2.8 噪声-自相关.jpg 如图所示:自相关函数消除了大量的噪声,周期成分变得非常明显。原始信号的时域处理结果:平

3、均值:0.0184极小值:-2.8138极大值:2.8557标准差:1.0103 方差: 1.0207峰峰值:5.6695第3章 机械信号的频域处理方法及其应用信号处理中,傅立叶变换把一个随机信号解析成不同频率的正弦波,使信号的频域分析称为可能。由于计算机技术的发展,在微机上直接使用离散傅立叶变换变得非常方便,这使得频域分析称为常用的处理方法。常用的频域分析方法包括自谱、功率谱、倒谱等。3.1 频谱的分析方法DFT和FFT3.1.1 离散傅立叶变换DFT傅立叶变换及其逆变换都不适合用数字计算机计算。要进行数字计算和处理,必须将连续信号离散化,无限数据有限化。这种对有限个离散数据的傅立叶变换,称

4、为有限离散傅立叶变换,简称DFT(Discrete Fourier Trasform)。3.1.2 快速傅立叶变换FFT1965年J.W.Cooley 和J.W.Tukey研究一种DFT的快速算法,称为快速傅立叶变换,简称FFT(FastFourier Transform)。FFT的迅速发展,使数字频谱分析取得了突破性的进展。根据FFT快速变换的指导思想,就可以编制FFT的计算程序。时间序列从时域到频域要用FFT变换,从频域到时域要用逆变换IFFT,FFT和IFFT的公式可以统一。3.1.3 功率谱密度函数的物理意义Sx(f)和Sxy(f)是随机信号的频域描述函数。Sx(f)表示信号的功率密度

5、沿频率轴的分布,故又称Sx(f)为功率谱密度函数。3.2 功率谱方法以及应用功率谱的定义式为若X()=DFTx(m),x(n)为N点序列。则X() =DFTx(-m)从而有 DFTR(M)= DFTx(m) DFTx即 ()= X()X| X()|2综上所述,先用FFT求出随机离散序列的DFT,再计算幅频特性的平方,再除以N,即得到该随机信号的功率谱估计。3.3 倒频谱分析方法倒频谱实际上是频域信号取对数的傅立叶变换再处理,或称为“频域信号的傅立叶变换再变换”。对功率谱密度函数取对数的目的是使再变换以后信号的能量更加集中。倒频谱可以分析复杂频谱上的周期成分,分离和提取在密集泛频信号中的成分。对

6、于具有同族谐频和异族谐频等复杂信号的分析,效果很好。倒频谱用于对语音分析中的语言音调的测定和检测、机械振动谱图中的谐波分量作故障检测和诊断以及排除回波等方面是很有效的。3.3.1 倒频谱的数学描述倒频谱函数CF(q)(power cepstrum)其数学表达式为:CF(q)又叫功率倒频谱,或叫对数功率谱的功率谱。工程上常用的是式(2.67)的开方形式,即:C0(q)称为幅值倒频谱,有时简称倒频谱。倒频谱自变量q的物理意义为了使其定义更加明确,还可以定义:即倒频谱定义为信号的双边功率谱对数加权,再取其傅里叶逆变换,联系一下信号的自相关函数:看出,这种定义方法与自相关函数很相近,变量q与在量纲上完

7、全相同。为了反映出相位信息,分离后能恢复原信号,又提出一种复倒频谱的运算方法。若信号x(t)的傅里叶变换为X(f):x(t)的倒频谱记为:显而易见,它保留了相位的信息。倒频谱与相关函数不同的只差对数加权,目的是使再变换以后的信号能量集中,扩大动态分析的频谱范围和提高再变换的精度。还可以解卷积(褶积)成分,易于对原信号的分离和识别。3.4 细化谱分析方法细化谱分析法是增加频谱中某些部分分辨能力的方法,即“局部放大”的方法。所谓细化分析室只对固定某窄带部分进行放大,像照相机将照片的个别部分放大一样,使其动态范围和分辨率都提高。细化的分析过程中,首先像通常的FFT做法那样,选用采样频率fs=1/h进

8、行采样,可得到N点离散序列xn.假设我们感兴趣的谱中心频率为fk的一个窄带f,然后用一个复正弦序列(单位旋转矢量)exp-j2fknh乘以xn的yn新的N点离散序列。根据频移定理,即将频率原点有效地移至频率fk(即复调制)。fk成为新的频率坐标原点。正、负采样频率fs也同样移动了一个量fk。低通滤波后得到gm序列所保留下来的窄频带,若滤波后的总带宽小于采样频率的1/D倍,就有可能把采样频率降低到1/D,而不会再新的乃奎斯特频率附近产生混叠。然后再重新采样,用fs2= fs/D的频率来采样,即降低了采样频率。由采样定理可知,降低采样频率而又保持同样的采样点数N时,就相当于总的时间窗增长D倍,那么

9、,频率分辨率也提高了D倍。所以,对经过重新采样后获得的新的离散序列rm进行复数FFT计算,即可得到细化后的谱线,这些谱线就代表中心频率为fk的一窄带f间的细化谱。3.5 Matlab编程实验结果3.5.1 产生一组由60HZ和150HZ的正弦信号和随机噪声组成的信号,观察其时域波形与频谱。(程序2) 图3-1 原始信号的时域波形图 图3-2 原始信号的频谱图图3-1看不出信号 的周期成分;图3-2可以清除看到,在频率为60HZ和150HZ处有两个尖峰,即为信号的两个频率分量。3.5.2 功率谱估计(周期图法):1.利用上图的带噪原始信号的傅里叶变换后结果幅值,将幅值平方,即可得功率谱的估计值(

10、Welch法) 图3-3 采样点数为1024时的估计功率谱 图3-4 采样点数为256时的估计功率谱由图3-3与3-4可看出:2.为提高周期图的平滑性,将信号分段估计并进行平均来减少功率谱估计的协方差,得到平均周期图。图3-5 三段平均的估计功率谱图3-6 六段平均的估计功率谱由图3-5与3-6看出:分段平均法提高了功率谱图的平滑性,分段数越多,平滑效果越好,信号细节更易丢失。3.对数据分段加非矩形创形成修正的功率谱估计法:图3-7 加汉宁窗的估计功率谱由于窗在其边沿为零,这减少了分段对混叠的依赖效果。用合适的窗函数,采用分段长度一半的混叠率能极大地降低估计的协方差。3.5.3 倒频谱分析:图

11、3-8 实倒谱图3-9 复倒谱 正弦信号,其第一个功率谱变换为一脉冲,经滤波后进入第二次功率谱变换,其输出为幅度很低的三角波输出,因而检测不到其存在。3.5.4细化谱分析:图3-10 原始信号FFT图3-11 ZOOM-FFT程序清单程序1.构造加噪周期信号,时域特征分析,自相关函数特性的验证fs=1000;t=0:1/fs:(1-1/fs);maxlag=100;x=randn(1,fs);c,maxlags=xcorr(x,maxlag); %白噪声的自相关性z=cos(2*pi*20*t)+0.7*randn(1,1000);%加白噪声m= mean(z); disp (m); %计算平

12、均值mi = min(z); disp (mi); %极小值mx = max(z); disp (mx); %极大值st = std(z); disp (st); %标准差fc = st.2; %方差figure(1)subplot(2,2,1) %2*2第一张图plot(t,x) %图片区域大小xlabel(t);ylabel(x(t)title(白噪声 %加标题subplot(2,2,2)plot(maxlags/fs,c)r(t)白噪声自相关c,lags=xcorr(z,maxlag); %带白噪声的余弦信号自相关subplot(2,2,3)plot(t,z)z(t)原始信号subplo

13、t(2,2,4)rz(t) title(自相关程序2: 产生一组由60HZ和150HZ的正弦信号和随机噪声组成的信号,对其做频谱分析、倒谱分析以及几种种功率谱估计方法的比较。%1.(频谱分析)产生一组由60HZ和150HZ的正弦信号和随机噪声组成的信号,观察其时域波形与频谱。N=1024;t=(0:N-1)/fs;f1=60;f2=150;s1=sin(2*pi*f1*t)+sin(2*pi*f2*t);s2=2*randn(size(t);x=s1+s2;subplot(2,1,1)plot(t,x)X=abs(fft(x);f=(0:N/2-1)*fs/N;subplot(2,1,2)pl

14、ot(f(1:N/2),X(1:N/2)%2.倒谱分析D=rceps(x); %实倒谱figure(2)plot(t,D) E=cceps(x); %复倒谱plot(t,E)%3.1功率谱估计(Welch法)Pxx=abs(fft(x,N).2/N; %采样点数为1024Pxx_short=abs(fft(x,256).2/256; %采样点数为256figure(3)plot(0:N-1)/N*fs,10*log10(Pxx)255)/256*fs,10*log10(Pxx_short)*10)%3.2将信号分段估计并进行平均来减少功率谱估计的协方差,得到平均周期图。Pxx=(abs(fft

15、(x(1:256).2+abs(fft(x(257:512).2+abs(fft(x(513:768).2)/256/3;figure(4)255)/256*fs,10*log10(Pxx) %3.3将信号分为六段作功率谱估计再平均。128).2+abs(fft(x(129:384).2+abs(fft(x(385:640).2+abs(fft(x(641:768).2)/256/6;127)/128*fs,10*log10(Pxx)%3.4对数据分段家非矩形创形成修正的周期突法。窗在其边沿为零,这减少了分段对混叠的依赖效果。用合适的窗函数(如海明窗,汉宁窗),采用分段长度一半的混叠率能%极大

16、地降低估计的协方差。汉宁法:w=hanning(256);Pxx=(abs(fft(w.*x(1:256).2+abs(fft(w.*x(129:384).2+abs(fft(w.*x(257:512).2+abs(fft(w.*x(385:640).2+abs(fft(w.*x(513:768).2+abs(fft(w.*x(641:896).2)/(norm(w)2*6);figure(5)255)/256*fs,10*log10(Pxx)程序3:%ZOOM-FFTfs=200;n=0:N-1;t=n/fs;N-1)*fs/N;f1=7;f2=7.2;f3=8;s1=sin(2*pi*t*

17、f1);s2=sin(2*pi*t*f2);s3=sin(2*pi*t*f3);x=s1+s2+s3;load zoomfftdata;fi=6;%最小细化截止频率np=10;%放大倍数nfft=512;%fft长度nt=length(x);fa=fi+0.5*fs/np;%最大细化截止频率nf=2nextpow2(nt);%?na=round(0.5*nf/np+1);%频移nt-1;b=n*pi*(fi+fa)/fs;%确定旋转因子y=x.*exp(-i*b);b=fft(y,nf);%fft变换a(1:na)=b(1:na);%正频率带通内的元素赋值a(nf-na+1:nf)=b(nf-

18、na+1:nf);b=ifft(a,nf);%负频率带通内的元素赋值c=b(1:np:nt);%重采样a=fft(c,nfft)*2/nfft;%进行ZOOM-FFT(nfft啥玩意儿?)%变换结果重新排序:y2=zeros(1,nfft/2);y2(1:nfft/4)=a(nfft-nfft/4+1:nfft);y2(nfft/4+1:nfft/2)=a(1:nfft/4);(nfft/2-1);f2=fi+n*2*(fa-fi)/nfft;%FFT变换y1=fft(x,nfft)*2/nfft;f1=n*fs/nfft;ni=round(fi*nfft/fs+1);na=round(fa*

19、nfft/fs+1);%输出波形plot(t,x);nn=ni:na;plot(f1(nn),abs(y1(nn),:,f2,abs(y2);%存储ZOOM-FFT结果save afterzoomdata f2 y2学习心得通过这将近一周半的数字信号处理的课程设计,我先在图书馆里查找了相关的书籍,如MATLAB类的编程书籍,各类数据处理类的书籍以及机械振动类的书籍等,即丰富了自己的知识范围,又对与自己所学的知识有了更深的了解和认识,同时也对它的应用有了一个大体的认识。这样将会更加激励我好好学习相关的知识,不断的将所学的知识用于实践。于实践中牢牢的掌握它。在设计的过程中,我也认识到了自己所学知识

20、的不足。这也让我再次认识到知识是无尽的,只有不断的充实自己、完善自己的知识理论体系,才能够更好的胜任自己以后的工作。设计过程中知识的不足也让我更加坚定了终身学习的决心。在设计的过程中,我也得到了我们设计小组的成员和很多同学的帮组。这也加强了我与其他同学合作的能力。查找资料的过程中我也增强自己学习的能力,这些都将让我在以后的学习、生活和工作中受益匪浅。总之,对于这样的课程设计活动,我收获了很多东西,也将使我在以后的学习、工作中更加轻松和积极。这也正是参加这次活动的目的和意义。参考文献1.林洪彬,谢平,王娜.信号处理原理及应用. 机械工业出版社,2009年2.李力机械信号处理及其应用华中科技大学出版社,2007年3.罗军辉,白义臣MATLAB7.0在数字信号处理中的应用机械工业出版社,2005年4.周浩敏,王睿.测试信号处理技术. 北京航空航天大学出版社,2005年5.程佩青.数字信号处理教程,清华大学,2001年.6.邓立新.数字信号处理学习辅导及习题详解,电子工业,2003年.7.丁玉美,数字信号处理(2ed)学习指导,西安电子科技大学,2001年.8.胡广书,数字信号处理-理论算法与实现,清华大学,2003年.

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1