1、要改变目前这种状况,就必须加大铸造企业的重组和结构调整,发展专业化生产,进一步扩大优势企业的规模,提高企业的工艺和装备水平,必须加大科技投入,建立企业的研发中心并实行产学研三结合的研发体制,推动自主创新,必须把环境保护和劳动保障当作一件大事抓紧抓好,必须大力降低能耗和原材料消耗,必须进一步培养铸造方面的专业人才,加强职工队伍的技术培训,提高全行业职工的技术与劳动素质。1.5 本设计的指导思想铸造工艺课程设计总的程序是:根据已下达的课题任务零件图进行详细的工艺分析后,绘制出铸造工艺图。以工艺图为依据,设计出模板图和芯合图,再绘制铸型装配图(合箱图),最后编写设计说明书和工艺卡。1.6 本设计拟解
2、决的关键问题通过阅读图纸,应着重了解以下各点:(1)了解铸造零件的结构形状及各投影间的关系,建立零件形状的明确完整的立体概念,以保证工艺设计及各项设计制图工作的顺利进行;(2)弄清零件图的各项尺寸,并着重记录铸造零件的重量,主要壁厚及最大壁厚,零件最大尺寸(长宽高轮廓尺寸),以供工艺设计使用;(3)零件各项公差要求,零件加工位置及零件各项加工要求(包括边面光洁度),并对加工方法做初步了解;(4)零件材质及性能要求,以及图纸上指出的各项特殊技术要求。2 设计方案零件结构的铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸件工艺过程和降低成本。审查、分析应考虑如下几个方面:1、
3、铸件应有合适的壁厚,为了避免浇不到、冷隔等缺陷,铸件不应太薄。2、铸件结构不应造成严重的收缩阻碍,注意薄壁过渡和圆角 铸件薄厚壁的相接拐弯等厚度的壁与壁的各种交接,都应采取逐渐过渡和转变的形式,并应使用较大的圆角相连接,避免因应力集中导致裂纹缺陷。3、铸件内壁应薄于外壁 铸件的内壁和肋等,散热条件较差,应薄于外壁,以使内、外壁能均匀地冷却,减轻内应力和防止裂纹。4、壁厚力求均匀,减少肥厚部分,防止形成热节。5、利于补缩和实现顺序凝固。6、防止铸件翘曲变形。7、避免浇注位置上有水平的大平面结构。2.1 零件的材质分析铸件成型材料为蠕墨铸铁,蠕墨铸铁是在铸铁材料方面介于球墨铸铁与灰铸铁之间的一种材
4、科。蠕虫状石墨是介于球伏与片状之间的一种过渡型石墨,因而使这种铸铁的材质性能也介于球墨铸铁与灰铸铁之间。简要地说,蠕墨铸铁具有接近于球墨铸铁的强度、刚性,一定的韧性,良好的耐磨性;另一方面,它又具有接近于灰铸铁的铸造性能和热传导性能,因此这种铸铁材料愈来愈引起人们的注意,并且巳开始在生产上获得了应用。它具有独特的性能,在汽车发动机、排气管、玻璃模具、柴油机缸盖、制动零、件刹车盘等方面应用取得了良好的效果。其化学成分:(见下表2-1),蠕铁的碳当量高,加稀土合金后又使铁水得到净化,因而使它具有较好的流动性。在碳当量相同的情况下,蠕铁和灰铸铁的流动性相似。蠕铁的收缩也介于灰铸铁和球铁之间,浇注系统
5、可按灰铸铁进行设计。但对致密性要求较高,壁厚相差较大的复杂铸件,要采用球铁的浇注和补缩系统。蠕铁兼有灰铸铁和球铁的良好性能,抗拉强度和屈服强度高于灰铸铁,相当于铁素体球铁。导热性接近于灰铸铁,因而铸造工艺方便、简单、成品率高。蠕铁有较好的抗生长和抗氧化性能,蠕铁的耐磨性为中国标准HT300的2.2倍以上,比高磷铸铁高1倍,而与磷铜钛铸铁相近。表2-1 ZG230-450的化学成分 (%)化学成分CSiMnSP含量3.43.6%2.43.0%0.4%0.6%20 e30 f30 铸件在砂箱中排列最好均匀对称,这样金属液作用于上砂型的抬芯力均匀,也有利于浇注系统安排,在结合已经确定分型面及浇注位置
6、以及砂箱尺寸,基本确定铸件在砂箱内的排列如图2.8所示,其中模样的吃砂量基本确定为:a1=30 a2=40 e1=70 e2=70 f=35 图2.8 砂箱中铸件排列示意图3 设计说明铸造工艺参数是指铸造工业设计时需要确定的工艺参数,工艺参数的选择是铸造工艺设计的重要内容。对指导铸造工艺设计与铸造生产具有重要作用,主要包括以下内容:3.1 工艺设计参数确定铸造工艺设计参数通常是指铸型工艺设计时需要确定的某些数据,这些工艺数据一般都与模样及芯盒尺寸有关,及与铸件的精度有密切关系,同时也与造型、制芯、下芯及合箱的工艺过程有关。3.1.1 最小铸出的孔和槽铸件上的孔和槽是否铸出,要根据具体情况而定,
7、一般较大的孔和槽直接铸出来,以节约金属减少机械加工,较小的孔和槽则不宜铸出。根据支座的轮廓尺寸160mm100mm由铸造工艺设计查表得:最小铸出孔约为6mm支座的孔25(如图3.1所示)考虑加工余量后直径为19mm,厚度为23mm。该孔直径比较大,高径比也不大,则应该铸出。支座的孔14(如图3.1所示)考虑加工余量后直径为8mm,厚度为27mm。该孔直径较小,高径比较大,不应该铸出,机械加工较为经济方便。图3.1 最小铸出孔示意图3.1.2 铸件的尺寸公差铸件尺寸公差是指铸件公称尺寸的两个允许极限尺寸之差。在这两个允许极限尺寸之内,铸件可满足机械加工、装配和使用要求。影响铸件尺寸精度的主要原因
8、有:铸造合金,铸件的结构,铸造方法,铸造工艺设计水平,操作水平,造型、造芯设备及工装的精度,造型、造芯材料的性能,铸件的精整和表面质量,生产技术管理和质量控制手段等等。铸件尺寸精度要求越高,对上述影响因素的要求和控制应越严,但铸件的成本也越高。因此,产品设计,必须用价值工程的理念考虑铸件的尺寸公差等级;生产厂家必须从实际出发综合考虑各种因素,达到既保证铸件质量又不过多的增加生产成本的目的。总的来说,提高铸件尺寸精度是一项系统工程,要有计划的去做逐步提高,只有提高了产品质量,只有性价比合理的产品,在市场上才有竞争力。支座为砂型铸造机器造型大批量生产,由铸造工艺设计查表得:支座的尺寸公差为CT81
9、2级,取CT9级。100mm,由铸造工艺设计查表得:支座尺寸公差数值为2.5mm。3.1.3 机械加工余量机械加工余量是指为了保证铸件加工面尺寸和零件精度,工艺设计时,在铸件代加工面上预先增加的而在机械加工时切削掉的厚度。机械加工余量值由精到粗分为A、B、C、D、E、F、G、H、J和K共十个等级。支座为砂型铸造机器造型大批量生产,由铸造工艺设计查表1-13得:支座的加工余量为EG级,取G级。100mm,由铸造工艺设计查表1-12得:支座加工余量数值为2.2mm,取2mm。但在分型面及浇注系统设置中,不得已将重要加工面底面朝上放置,这样使其容易产生气孔、非金属夹杂物等缺陷,所以将采取适当加大加工
10、余量的方法使其在加工后不出现缺陷。将底面的加工余量调整为3mm。3.2 铸造收缩率铸造收缩率又称铸件的线收缩率,用模样与铸件的长度之差除以模样长度的百分比表示:=(L1-L2)/L1100%式中 -铸造收缩率(%)L1-模样长度(mm)L2-铸件长度(mm)铸造收缩率与铸造的合金种类、铸件结构、浇冒口系统结构、铸型的种类等因素有关。铸造合金由凝固态变为固态要产生收缩;合金成分与其含量不同,其收缩率也不同,这是铸造合金的特性。铸件结构复杂,浇冒口结构阻碍收缩,砂型和砂芯的退让性差,都要阻碍铸件由液态转变为固态的收缩。简单厚实的铸件,其铸造收缩率比结构复杂的铸件大。结构复杂的大型铸件,其立体三维方
11、向上的线收缩率各不相同。因此,铸造收缩率是综合了各种因素之后,形成的铸件尺寸的实际收缩率。做模样时,称它为缩尺或放缩。 为了获得尺寸精确的铸件,必须选择适宜的铸造收缩率。支座受阻收缩率由铸造工艺设计查表得:受阻收缩率为0.9。3.2.1 起模斜度为了方便起模,在模样,芯盒的出模方向留一定斜度,以免损坏砂型或砂芯。这个斜度,称为起模斜度。起模斜度应设计在铸件没有结构斜度,并垂直于分型面的表面上,其大小依起模高度。模样表面粗糙度值以及造型、芯的方法而定。初步设计的起模斜度如下:外型模的A面(如图3.2所示)高15mm的起模斜度由铸造工艺设计查表得:粘土砂造型外表面起模斜度为=110,a=0.8mm
12、外型模的B面(如图3.2所示)高115mm的起模斜度由铸造工艺设计查表得:粘土砂造型外表面起模斜度为=025,a=1.2mm但是同一铸件要尽量选用同一起模斜度,以免加工金属模时频繁的更换刀具。所以选用同一起模斜度为=1由于A面,B面(如图3.2所示)均为非加工表面,因此起模斜度的形式选用增加和减少铸件尺寸的方法。图3.2外型模起模斜度示意图3.2.2 浇注温度和冷却时间铸件在砂型内的冷却时间短,容易产生变形,裂纹等缺陷。为使铸件在出型时有足够的强度和韧性,铸件在砂型内应有足够的冷却时间。支座的冷却时间由铸造工艺设计查表得:冷却时间为3060min。3.3 砂芯设计 型芯是铸型的一个重要组成部分
13、,型芯的作用是形成铸型的内腔,孔洞,阻碍起模部分的外形以及铸型中有特殊要求的部分。型芯应满足以下要求:型芯的形状,尺寸以及在铸型中的位置应符合铸件的要求,具有足够的强度和刚度;在铸件形成过程中型芯所产生的气体能及时排出型外;铸件收缩时阻力小;造芯,烘干,组合装配和铸件清理等工序操作简单。 砂芯的设计,主要包括芯头的设计、芯骨的设计、砂芯排气设计。必要时,仍有选用及安置芯撑的的设计。3.3.1 芯头的设计砂芯主要靠芯头固定在砂型上。对于垂直芯头为了保证其轴线垂直、牢固地固定在砂型上,必须有足够的芯头尺寸。根据实际设计量取计算砂芯高度: L=97mm 砂芯直径: (A+B)/2=(80+64)/2
14、=72mm芯头长度初步选取由铸造工艺设计查表得:h=2530mm 取h=30mm出于考虑分型面的选取等因素综合芯头选用垂直芯头并且不能做出上芯头,只设计下芯头并且加大下芯头。下芯头长度设计修正为:h=30(1+40%)=42mm芯头间隙初步选取由铸造工艺设计查表得:s=0.3mm但考虑砂芯为垂直的湿型小砂芯且不设置上芯头,所以使用过盈的芯头,过盈量为0.2mm芯头斜度选取由铸造工艺设计查表得:7 取=73.3.2 砂芯的定位结构砂芯要求定位准确,不允许沿芯头轴向移动或绕芯头轴线转动。对于形状不对称的砂芯,为了定位准确,需要做出定位芯头。定位芯头结构如图3.3图3.3 定位芯头结构图3.3.3
15、芯骨设计为了保证砂芯在制芯、搬运、配芯和浇注过程中不开裂、不变形、不被金属液冲击折断,生产中通常在砂芯中埋置芯骨,以提高其刚度和强度。因为砂芯尺寸较小,而且采用树脂砂,故砂芯强度较好,砂芯内不用放置芯骨。 3.3.4 砂芯的排气砂芯在浇注过程中,其粘结剂及砂芯中的有机物要燃烧(氧化反应)放出气体,砂芯中的残余水分受热蒸发放出气体,如果这些气体排不出型外,则要引起铸件产生气孔。而支座的砂芯采用热芯盒造芯,故不用有意设置排气道、排气孔等排气。3.4 浇注系统及冒口,冷铁,出气孔的设计3.4.1 浇注系统的类型和应用范围浇注系统分为封闭式浇注系统,开放式浇注系统,半封闭式浇注系统和封闭-开放式浇注系
16、统。因为封闭式浇注系统控流截面积在内浇道,浇注开始后,金属液容易充满浇注系统,呈有压流动状态。挡渣能力强,但充型速度快,冲刷力大,易产生喷溅,金属液易氧化。适用于湿型铸件小件。而支座就是采用湿型的铸件小件,所以选择封闭式浇注系统。3.4.2 确定内浇道在铸件上的位置、数目、金属引入方向支座结构较为简单且是小型件,铸造时采取一箱四件,故每个铸件上只用一个内浇道。为了方便造型,内浇道开设在分型面上。因为铸件采用底座朝上且铸件全部位于下箱的方式进行铸造,这样铸件凝固顺序为由下至上凝固,这样有利于支座的重要部分先凝固并得到补缩,如此内浇道则设置在底部侧面引入金属液,如图3.4所示。图3.4 内浇道位置
17、示意图3.5 决定直浇道的位置和高度实践证明,直浇道过低使充型及液态补缩压力不足,容易出现铸件棱角和轮廓不清晰、浇不到上表面缩凹等缺陷。初步设计直浇道高度等于上沙箱高度200mm。但应检验该高度是否足够。检验依据为,剩余压力头应满足压力角的要求,如下式所列:HMLtg式中 HM最小剩余压力头L直浇道中心到铸件最高且最远点的水平投影距离压力角由铸造工艺学查表得:为910 取10Ltg=180tg1032mm因为铸件全部位于下箱,所以剩余压力头HM等于上箱高度200mm经过验证剩余压力头满足压力角的要求。3.5.1 计算内浇道截面积内浇道是控制充型速度和方向,分配金属液,调节铸件各部位的温度和凝固
18、顺序,浇注系统的金属液通过内浇道对铸件有一定补缩作用。由于设计内浇口有四个,因此S内=3/80.4cm内浇道形状取梯形断面形状如图3.5图3.5 内浇道截面示意图铸造实用手册查表得:a=7mm b=5mm c=7mm3.5.2 计算横浇道截面积横浇道的功用是向内浇道分配洁净的金属液,储留最初浇入的含气和渣污的低温金属液并阻留渣滓,使金属液流平稳和减少产生氧化夹杂物。由于设计横浇口有两个,因此S横=31.2/2=1.8 cm横浇道形状取梯形断面形状如图3.6图3.6 横浇道截面示意图梯形断面大小由铸造实用手册查表得:A=15mm B=10mm C=16mm3.5.3 计算直浇道截面积直浇道的功用是从浇口杯引导金属液向下,进入横浇道、内浇道或直接进入型腔。并提供足够的压力头,使金属液在重力作用下能克
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1