ImageVerifierCode 换一换
格式:DOCX , 页数:59 ,大小:1.41MB ,
资源ID:22565355      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/22565355.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(以太网交换机基础知识必看内容Word格式文档下载.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

以太网交换机基础知识必看内容Word格式文档下载.docx

1、5.2.2 GARP/GVRP/GMRP 355.2.3 聚合特性 365.2.4 Isolate-user-vlan 375.2.5 二层多播 385.2.6 QinQ 395.3 三层特性 395.3.1 SuperVLAN 395.4 Qos/ACL 405.5 安全特性 405.5.1 802.1X 405.5.2 PORTAL 425.6 管理特性 435.6.1 集群管理 445.6.2 WEB网管 455.7 IRF 455.8 与路由器相同的一些特性 476 以太网交换机主要厂商 476.1 Cisco 476.2 Extreme 486.3 Foundry 486.4 港湾

2、487 参考资料 48图索引图 1 MAC地址 7图 2 常用的以太网帧格式 8图 3 由HUB组成的网络 11图 4 全双工以太网 11图 5 二层交换机结构示意图 12图 6 二层交换机的转发流程 13图 7 二层交换机工作在链路层 13图 8 交换机的冲突域和广播域 14图 9 由二层交换机构成的扁平网络 14图 10 基于端口VLAN的划分 16图 11 802.1Q VLAN帧格式 18图 12 Trunk链路实现虚拟工作组 18图 13 支持VLAN交换机交换引擎 19图 14 IVL和SVL地址学习方式 20图 15 IVL地址学习方式转发流程 21图 16 SVL地址学习方式转

3、发流程 21图 17 支持VLAN交换机冲突域和广播域 22图 18 三层交换机功能模型 24图 19 三层交换引擎 24图 20 三层转发流程 26图 21 路由器的最长匹配转发 28图 22 三层交换机转发-精确匹配 29图 23 三层交换机转发-最长匹配 29图 24 以太网的自协商 31图 25 STP阻塞网络环路 34图 26 MSTP根据VLAN进行阻塞链路 35图 27 GARP属性注册和注销 35图 28 GARP基本原理 36图 29 Isolate-user-vlan 37图 30 不支持多播功能交换机 38图 31 QinQ实现vMAN 39图 32 802.1X认证体系

4、结构 41图 33 PORTAL认证四大要素 43图 34 集群的组成 45图 35 IRF的组成 46图 36 IRF的典型应用 47表索引表 1. LAN/MAN参考模型 15表 2. 路由器和三层交换机的特点对比 30表 3. PORTAL、PPPoE/A、802.1X三种认证方式的特点对比 43以太网交换机基础培训教材Keywords 关键词:以太网,交换机,LAN,VLAN,IRFAbstract 摘 要:本文介绍以太网交换机的相关知识和基本原理。主要包括:1)以太网交换机基础知识;2)二、三层交换机的基本原理和转发流程;3)以太网交换机常用特性和技术。List of abbrevi

5、ations 缩略语清单: Abbreviations 缩略语Full spelling 英文全名Chinese explanation 中文解释POEPower Over Ethernet以太网供电IVLIndependent Vlan Learning独立vlan学习SVLSharing Vlan Learning共享vlan学习VLANVirtual Local Area Network虚拟局域网GVRPGeneric Vlan Registration Protocol通用vlan注册协议RSTPRapid Spanning Tree Protocol快速生成树协议MSTPMultip

6、le Spanning Tree Protocol多实例生成树协议LACPLink Aggregation Control Protocol链路聚合控制协议DHCPDynamic Host Configuration Protocol动态主机配置协议NTPNetwork Time Protocol网络时间协议VRRPVirtual Router Redundancy Protocol虚拟路由冗余协议RIPRouting Information Protocol路由信息协议OSPFOpen Shortest Path First开放最短路径优先IS-ISIntermediate System-t

7、o-Intermediate System intra-domain routing information exchange protocolIS-IS路由协议BGPBorder Gateway Protocol边界网关协议IGMPInternet Group Management ProtocolInternet组管理协议IGMP SnoopingInternet Group Management Protocol SnoopingIGMP侦听GMRPGeneric Multicast Registration Protocol通用组播注册协议PIM-DMProtocol Independ

8、ent Multicast-Dense Mode密集模式协议无关组播PIM-SMProtocol Independent Multicast-Sparse Mode稀疏模式协议无关组播MSDPMulticast Source Discovery Protocol组播源发现协议WREDWeighted Random Early Detection加权随机早期检测CHAPChallenge Handshake Authentication Protocol质询握手验证协议PAPPassword Authentication Protocol密码验证协议EAPExtensible Authentic

9、ation Protocol可扩展认证协议SSHSecure Shell安全外壳IDSIntrusion Detection System入侵检测系统RMONRemote MONitor远程监控HGMPHuawei Group Management Protocol华为组管理协议NDPNeighbor Discovery Protocol邻居发现协议IRFIntelligent Resilient Framework智能弹性架构1 以太网概述以太网是在70年代初期由Xerox公司Palo Alto研究中心推出的。1979年Xerox、Intel和DEC公司正式发布了DIX版本的以太网规范,19

10、83年IEEE 802.3标准正式发布。初期的以太网是基于同轴电缆的,到八十年代末期基于双绞线的以太网完成了标准化工作,即我们常说的10BASE-T。随着市场的推动,以太网的发展越来越迅速,应用也越来越广泛。下面简单列一下以太网的发展历程: 70年代初,以太网产生; 1929年,DEC、Intel、Xerox成立联盟,推出DIX以太网规范; 1980年,IEEE成立了802.3工作组; 1983年,第一个IEEE802.3标准通过并正式发布 通过80年代的应用,10Mb/s以太网基本发展成熟 1990年,基于双绞线介质的10BASE-T标准和IEEE 802.1D网桥标准发布 90年代,LAN

11、交换机出现,逐步淘汰共享式网桥 1992年,出现了100Mb/s快速以太网 通过100BASE-T标准(IEEE802.3u) 全双工以太网(IEEE97) 千兆以太网开始迅速发展(96) 1000Mb/s千兆以太网标准问世(IEEE802.3z/ab) IEEE 802.1Q和802.1P标准出现(98) 10GE以太网工作组成立(IEEE802.3ae)2 以太网的基础知识以太网是一种能够使计算机进行相互传递信息的介质,它利用二进制位形成一个个的字节,这些字节然后组合成一帧帧的数据。帧有一个起点,我们称之为帧头;也有终点,我们称之为作帧尾。以太网由许多物理网段组合而成,每个网段包括一些导线

12、和与导线相连的网络设备。以太网上有很多网络设备,每个设备都会接收到各种各样的帧信息。那么,设备怎样才能知道帧是否是直接对它进行访问呢?其实,在每个帧报头中,都包含有一个目地介质访问控制地址(MAC)和一个源MAC地址,目的MAC地址就可以告诉网络设备帧是否是对它进行直接访问。如果设备发现帧的目的MAC地址与自己的MAC不匹配,设备将对不处理该帧。2.1 MAC地址MAC地址有48位,它可以转换成12位的十六进制数,参见图1。这个数分成三组,每组有四个数字,中间以点分开。MAC地址有时也称为点分十六进制数。为了确保MAC地址的唯一性,IEEE对这些地址进行管理。每个地址由两部分组成,分别是供应商

13、代码和序列号。供应商代码代表NIC(网络接口卡)制造商的名称,它占用MAC的前六位12进制数字,即24位二进制数字。序列号由供应商管理,它占用剩余的6位地址,或最后的24位二进制数字。图 1 MAC地址从实际使用的角度看,以太网的MAC地址可以分为三类,分别是单播地址、多播地址、广播地址: 单播地址:第一字节最低位为0,00e0.fc00.0006。用于网段中两个特定设备之间的通信,可以作为以太网帧的源和目的MAC地址; 多播地址:第一字节最低位为1,01e0.fc00.0006。用于网段中一个设备和其他多个设备通信,只能作为以太网帧的目的MAC; 广播地址:48位全1,ffff.ffff.f

14、fff。用于网段中一个设备和其他所有设备通信,只能作为以太网帧的目的MAC。2.2 以太网帧的帧格式对MAC地址有一个基本认识后,我们有必要进一步了解以太网帧的帧格式是怎么样的?有哪几种常用的帧格式?下图就是目前常用几种以太网帧格式。图 2 常用的以太网帧格式2.2.1 以太网帧头的作用是标识封装在帧中的第3层信息包的类型。以太网使用类型字段,其长度为2个字节。这种帧格式是目前最常用的以太网帧格式。2.2.2 带有802.2逻辑链路控制的IEEE 802.3IEEE基于原始的以太网帧来设计自己的以太网帧类型。IEEE 802.3的以太网帧报头和以太网的帧报头非常相似,不过其类型字段的长度有所变

15、化,它增加了一个称作逻辑链路控制(LLC)的字段。LLC用来识别信息包中使用的第3层协议。LLC报头或IEEE报头都包含DSAP(destination service access point,目的服务访问点)、SSAP(source service access point,源服务访问点)和控制字段。DSAP和SSAP合并后就可标识第3层协议的类型。2.2.3 IEEE 802.3子网访问协议(以太网SNAP)80年代中期,以太网非常流行,IEEE担心它将使用完所有的DSAP和SSAP编码,所以就定义了一种新的帧格式。这种帧格式称为以太网子网访问协议,有时候也称为以太网SNAP。这种格式的

16、帧报头以“AA”取代DSAP和SSAP。在DSAP和SSAP字段中出现“AA”时,帧是一个以太网SNAP帧。这时,第3层协议将在OUI(Organizational unique identifier,组织唯一标识)字段后的类型字段中表示。QUI是一个6位的十六进制数,它可以唯一地标识一个组织。IEEE对QUI进行赋值。2.2.4 Novell以太网Novell以太网帧类型只适用于IPX通信。Novell以前没有考虑IPX将附属于其他第3层协议。所以,也就没有必要用字段来识别第3层协议。如果你运行的是Novell网络,就可以使用IPX。Novell以太网帧格式以一个长度字段来取代类型字段,与前

17、面的IEEE的做法一样。不过长字段后没有LLC字段。2.3 CSMA/CD以太网使用CSMA/CD(Carrier Sense Multiple Access with Collision Detection,带有冲突监测的载波侦听多址访问)。我们可以将CSMA /CD比做一种文雅的交谈。在这种交谈方式中,如果有人想阐述观点,他应该先听听是否有其他人在说话(即载波侦听)。如果这时有人在说话,他应该耐心地等待,直到对方结束说话,然后他才可以开始发表意见。另外,有可能两个人在同一时间都想开始说话,那会出现什么样的情况呢?显然,如果两个人同时说话,这时很难辨别出每个人都在说什么。但是,在文雅的交谈方

18、式中,当两个人同时开始说话时,双方都会发现他们在同一时间开始讲话(即冲突检测),这时说话立即终止。随机地过了一段时间后(回退),说话才开始。说话时,由第一个开始说话的人来对交谈进行控制,而第二个开始说话的人将不得不等待,直到第一个人说完,然后他才能开始说话。除计算机以外,以太网的工作方式与上面的方式相同。首先,以太网网段上需要进行数据传送的节点对导线进行监听,这个过程称为CSMA/CD的载波侦听。如果,这时有另外的节点正在传送数据,监听节点将不得不等待,直到传送节点的传送任务结束。如果某时恰好有两个工作站同时准备传送数据,以太网网段将发出“冲突”信号。这时,节点上所有的工作站都将检测到冲突信号

19、,因为,这时导线上的电压超出了标准电压。冲突产生后,这两个节点都将立即发出拥塞信号,以确保每个工作站都检测到这时以太网上已产生冲突,导线上的带宽为0 Mb/s。然后,网络进行恢复,在恢复的过程中,导线上将不传送数据。在这一过程中,不属于产生冲突的网段上的节点也要等到冲突结束后才能传送数据。当两个节点将拥塞信号传送完,并过了一段随机时间后,这两个节点便开始将信号恢复到零位。第一个达到零位的工作站将首先对导线进行监听,当它监听到没有任何信息在传输时,便开始传输数据。当第二个工作站恢复到零位后,也对导线进行监听,当监听到第一个工作站已经开始传输数据后,就只好等待了。注意实际上,随机的时间是通过一种算

20、法产生的,这种算法在IEEE 802.3标准CSMA/CD文档第55页可以找到。在CSMA/CD方式下,在一个时间段,只有一个节点能够在导线上传送数据。如果其他节点想传送数据,必须等到正在传输的节点的数据传送结束后才能开始传输数据。以太网之所以称作共享介质就是因为节点共享同一根导线这一事实。2.4 冲突域和广播域我们知道,当以太网发生冲突的时候,网络要进行恢复(即处于回退阶段),此时网络上将不能传送任何数据。因此,冲突的产生降低了以太网导线的带宽,而且这种情况是不可避免的。所以,当导线上的节点越来越多后,冲突的数量将会增加。在以太网网段上放置的最大的节点数将取决于传输在导线上的信息类型。显而易

21、见的解决方法是限制以太网导线上的节点。这个过程通常称为物理分段。物理网段实际上是连接在同一导线上的所有工作站的集合,也就是说,和另一个节点有可能产生冲突的所有工作站被看作是同一个物理网段。经常描述物理网段的另一个词是冲突域,这两种说法指的是同一个意思。由于各种各样的原因,网络操作系统(NOS)使用了广播。TCP/IP使用广播从IP地址中解析MAC地址,还使用广播通过RIP协议进行宣告。因此,广播存在于所有的网络上,如果不对它们进行适当的维护和控制,它们便会充斥于整个网络,产生大量的网络通信。前面已经介绍过,广播的目标地址为ffff.ffff.ffff,这个地址将使所有工作站处理该帧。因此,广播

22、不仅消耗了带宽,限制了用户获取实际数据的带宽,而且也降低了用户工作站的处理效率。在这种情况下,所有能够接收其他广播的节点被划分为同一个逻辑网段,也称为广播域。一般来说,逻辑网段定义了第三层网络,如IP子网等。2.5 以太网的典型设备-HUB在局域网(LAN-Local Area Network)中,每个工作站都通过某种传输介质连接到网络上。一般情况下,服务器不会有很多网络接口卡(NIC)。因此,不可能将所有的工作站都连接到服务器上。因此,局域网中会使用HUB,这是网络中很常用的设备。HUB是一种典型的采用以太网CSMA/CD机制的设备,其主要作用是: 被用作网络设备的集中点 放大信号 无路径检

23、测或交换从HUB的作用可以看出,HUB对所连接的LAN只做信号的中继,工作在网络的物理层,连接在HUB上的所有物理设备相当于连接在同一根导线上,都处于同一个冲突域和广播域,参见图3。因此,在网络设备很多的情况下,设备之间的冲突将会很严重,并且导致广播泛滥,严重影响网络地性能。图 3 由HUB组成的网络2.6 全双工以太网当两个以太网节点通过10baseT的电缆直接连接时,导线类似于图4。在这种情况下,数据可以通过两种独立的路径传输和接收。由于只存在两个节点,也就没有总线,所以就可以在同一时间对信息进行双向传输,而不会发生冲突。在这种情况下,以太网称为全双工以太网。为了实现全双工以太网,两个节点

24、必须通过10baseT直接连接,而且NIC必须支持全双工。图 4 全双工以太网3 二层交换机的基本原理3.1 二层交换机顾名思义,所谓二层交换机,其进行转发的依据就是以太网帧的二层信息,即MAC地址且是帧的目的MAC地址。交换机接收到一个以太网帧后,然后根据该帧的目的MAC,把报文从正确的端口转发出去,该过程称为二层交换,对应的设备称为二层交换机。在这里稍微提一下,在二层交换机之前用于二层交换机的设备是透明网桥,它和二层交换机的最大区别就是:透明网桥只有两个端口,而交换机的端口数目远远超过两个。目前的交换机都采用硬件来实现其转发过程,该器件一般称为ASIC(Application Specif

25、ic Integrated Circuit ),也俗称为交换引擎。对于二层交换机来说,ASIC将维护一张二层转发表L2FDB(Layer 2 forwarding database)。表项的主要内容是MAC地址和交换机端口的对应关系。图5即为二层交换机结构示意图。图 5 二层交换机结构示意图下面就详细了解一下二层交换机的转发过程,以图6为例进行说明。交换机从端口1接收到一个以太网帧,其转发流程如下: 根据帧的目的MAC查MAC转发表(即L2FDB),查找相应的出端口。根据现有L2FDB表,报文应该从端口2发送出去; 如果在L2FDB表中查找不到该目的MAC,则该报文将通过广播的方式向交换机所有

26、端口转发; 同时该以太网帧的源MAC将被学习到接收到报文的端口上,即端口1; L2FDB表中MAC地址通过老化机制来更新; 在转发的过程中,不会对帧的内容进行修改。图 6 二层交换机的转发流程现在我们来分析一下使用交换机构成的网络,其冲突域和广播域是怎样的?性能如何?由于以太网发生冲突是在网络的第一层,而交换机工作在网络的第二层即链路层,参见图7。图 7 二层交换机工作在链路层因此,二层交换机将网络的冲突域限制在了交换机的端口内(参见图8),也就是给网络划分成了若干个物理网段,每个端口一个物理网段,大大地减少了冲突对网络带来的影响,改善了网络的性能。图 8 交换机的冲突域和广播域然后,我们也必

27、须要看到,交换机虽然可以有效地的限制冲突的发生,但对于广播无能为力。对于大量的交换机构成的扁平网络(参见图9)而言,广播对网络性能的影响是显而易见的。广播消耗了大量的网络带宽;网络的安全性差,任何两台主机之间都可以相互访问。图 9 由二层交换机构成的扁平网络3.2 支持VLAN的二层交换机路由器基于第3层报头、目标IP寻址作出转发决定,不能对广播进行转发。所以通过路由器可以限制广播的转发,形成更多的广播域或逻辑网段。当然,路由器可以对网络进行物理分段,方式与交换机和网桥相同。虽然,路由器能达到限制以太网广播域的作用,但其有一定的限制:1)路由器成本较高;2)路由器端口数目较少,一般不能满足二层

28、网络的应用。为此,在二层交换机中引入了VLAN的概念。3.2.1 VLAN的概念我们知道,IEEE802.3给出了LAN/MAN参考模型(表1所示),LAN(Local Area Network)协议包括了OSI七层模型的低三层:物理层、数据链路层和网络层。其中,数据链路层又分为逻辑链路控制层(LLC)和媒体接入控制层(MAC)。表 1. LAN/MAN参考模型OSI七层模型IEEE802LAN/MAN参考模型网络层网间互联数据链路层逻辑链路控制层(LLC)媒体接入控制层(MAC)物理层那么什么是VLAN呢?VLAN-Virtual Local Area Network,称为虚拟局域网,是将一组位于不同物理网段上的工作站和服务器从逻辑上划分成不同的逻辑网段,在功能和操作上与传统LAN基本相同,可以提供一定范围内终端系统的互联和传输。那么,使用VLAN能带来什么优点?(1) 限制了网络中的广播一般交换机不能过滤局域网广播报文,因此在大型交换局域网环境中造成广播量拥塞,对网络带宽造成了的极大浪费。用户不得已用路由器分割他们的网络,此时路由器的作用是广播的“防火墙”。VLAN的主要优点之一是:支持VLAN的LAN交换机可以有效地用于控制广播流量,广播流量仅仅在VLAN内被复制,而不是整个交换机,从而提供了类似

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1