1、38 直角三角形斜边上的中线等于斜边上的一半39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方
2、,即a+b=c47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形四边形48定理 四边形的内角和等于36049四边形的外角和等于36050多边形内角和定理 n边形的内角的和等于(n-2)18051推论 任意多边的外角和等于36052平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论 夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理
3、3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形矩形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形菱形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(ab)267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形正方形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70
4、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称等腰梯形74等腰梯形性质定理 等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形等分78平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等79 推论1 经过梯
5、形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)2 S=Lh83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:d84 (2)合比性质 如果a/b=c/d,那么(ab)/b=(cd)/d85 (3)等比性质 如果a/b=c/d=m/n(b+d+n0),那么(a+c+m)/(b+d+n)=a/b86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线
6、段成比例87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理
7、3 三边对应成比例,两三角形相似(SSS)95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值圆101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103
8、圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理 不在同一直线上的三个点确定一条直线110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧平分弦所对的一条弧的直径,垂直平分
9、弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理 一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角
10、形120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121直线L和O相交 dr直线L和O相切 d=r直线L和O相离 dr122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理 圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理 弦切角等于它所夹的弧对的圆周角129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角
11、也相等130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135两圆外离 dR+r 两圆外切 d=R+r两圆相交 R-rdR+r(Rr)两圆内切 d=R-r(Rr) 两圆内含dR-r(Rr)136定理 相交两圆的连心线垂直平分两圆的公共弦137定理 把圆分成n(n3):依次连结各分点
12、所得的多边形是这个圆的内接正n边形经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)/n140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180/n=360化为(n-2)(k-2)=4144弧长计算公式:L=nR/180145扇形面积公式:S扇形=nR/360=L
13、R/2146内公切线长= d-(R-r) 外公切线长= d-(R+r)物理中考复习-物理公式物理量 单位v速度 m/s km/hs路程 m kmt时间 s hG重力 N m质量 kg g重力与质量的比值 g=9.8N/kg;粗略计算时取g=10N/kg。单位换算:1 m=10dm=102cm=103mm1h=60min=3600 s; 1min=60s速度公式: 公式变形:求路程 求时间重力与质量的关系:G = mg 合力公式: F = F1 + F2 同一直线同方向二力的合力计算 F = F1 - F2 同一直线反方向二力的合力计算 密度公式:浮力公式:F浮=G F F浮=G排=m排gF浮=
14、水gV排F浮=G 压强公式:p=液体压强公式:p=gh 提示:应用帕斯卡原理解题时,只要代入的单位相同,无须国际单位;帕斯卡原理:p1=p2 或应用杠杆平衡条件解题时,L1、L2的单位只要相同即可,无须国际单位;F1动力 N L1动力臂 m F2阻力 N L2阻力臂 mF 动力 NG总总重 N (当不计滑轮重及摩擦时,G总=G)n 承担物重的绳子段数 s动力通过的距离 mh重物被提升的高度 mn承担物重的绳子段数 杠杆的平衡条件:F1L1=F2L2 或写成:滑轮组:F = G总 s =nh 对于定滑轮而言: n=1 F = G s = h 对于动滑轮而言: n=2 F = G s =2 h机械
15、功公式:W=F s功率公式:P =机械效率:100%热量计算公式:物体吸热或放热Q = c m t(保证 t 0)燃料燃烧时放热Q放= mq I电流 A Q电荷量 库 Ct时间 sU电压 VR电阻 电流等于1s内通过导体横截面的电荷量。同一性:I、U、R三量必须对应同一导体(同一段电路);同时性:I、U、R三量对应的是同一时刻。电流定义式:欧姆定律:电功公式:W = U I t W = U I t 结合UI R W = I 2Rt W = U I t 结合IU/R W = t 如果电能全部转化为内能,则:Q=W 如电热器。电功率公式:P = W /t P电功率 WI电流 AU电压 V P=P=
16、I2R 只能用于:纯电阻电路。P = I U串联电路的特点:电流:在串联电路中,各处的电流都相等。表达式:I=I1=I2 电压:电路两端的总电压等于各部分电路两端电压之和。U=U1+U2 分压原理:串联电路中,用电器的电功率与电阻成正比。并联电路的特点:在并联电路中,干路中的电流等于各支路中的电流之和。I=I1+I2 分流原理:各支路两端的电压相等。U=U1=U2 并联电路中,用电器的电功率与电阻成反比。初三化学方程式总结:与氧有关1.红磷与氧气中燃烧:4P+5O22P2O5,实验现象:生成大量白烟。2.硫粉与氧气中燃烧:S+O2SO2,实验现象:在空气中发出淡蓝色火焰(在氧气中发出蓝紫色火焰
17、),并生成刺激性气味的气体。3.碳在氧气中充分燃烧:C+O2CO2,实验现象:在氧气中燃烧,发出白光,生成能使澄清石灰水变浑浊的气体。4.碳在氧气中不充分燃烧:2C+O22CO,实验现象:生成无色无味有毒的一氧化碳气体。5.铁在氧气中燃烧:3Fe+2O2Fe3O4,实验现象:剧烈燃烧,火星四射,生成黑色固体。6.铜在空气中受热:2Cu+O22CuO,实验现象:红色固体逐渐变为黑色固体。7.铝在空气中燃烧:4Al+3O22Al2O3,实验现象:光亮的表面变成白色(氧化铝膜)。8.镁在空气中燃烧:2Mg+O22MgO,实验现象:剧烈燃烧,发出耀眼的白光,生成白色固体。9.氢气中空气中燃烧:2H2+
18、O22H2O,实验现象:安静燃烧,发出蓝色火焰。10.甲烷在空气中燃烧:CH4+2O2CO2+2H2O,实验现象:11.一氧化碳在氧气中燃烧:2CO+O22CO2,实验现象:12.酒精在空气中燃烧:C2H5OH+3O22CO2+3H2O,实验现象:发出蓝色火焰。13.水在直流电的作用下分解:2H2O2H2+O2,实验现象:氢气、氧气体积比为2:114.氧化汞加热分解:2HgO2Hg+O2,实验现象:红色固体变成银白色汞液体。15.双氧水分解制备氧气:2H2O22H2O+O2,实验现象:加入二氧化锰后,迅速放出能使带火星木条复燃的气体。16.加热高锰酸钾制氧气:2KMnO4K2MnO4+MnO2
19、+O2,实验现象:生成能使带火星木条复燃的气体。17.加热氯酸钾制氧气(有少量的二氧化锰):2KClO32KCl+3O2,实验现象:与二氧化碳有关1.碳在氧气中燃烧化学方程式:CO2;实验现象:发出白光,生成能使澄清石灰水变浑浊的气体。2.二氧化碳与澄清的石灰水反应CO2+Ca(OH)2=CaCO3+H2O;有白色沉淀生成。3.二氧化碳与碳酸钙反应,(向澄清石灰水中通入过量二氧化碳)CaCO3+H2O+CO2=Ca(HCO3)2;浑浊逐渐消失,溶液变澄清。4.二氧化碳与水反应:CO2+H2O=H2CO3;5.氢氧化钠与少量二氧化碳反应:CO2+2NaOH=Na2CO3+H2O;无明显现象。6.
20、氢氧化钠与过量二氧化碳反应:CO2+NaOH=NaHCO3;7.二氧化碳与碳酸钠反应:CO2+Na2CO3+H2O=2NaHCO3;8.二氧化碳的实验室制法CaCO3+2HCl=CaCl2+CO2+H2O,实验现象:白色固体逐渐溶解,生成能使澄清石灰水变浑浊的气体。9.碳酸钙高温分解:CaCO3CaO+CO2;10.二氧化碳高温条件下与碳反应:C+CO22CO;11.一氧化碳还原氧化铜CO+CuOCu+CO2;黑色固体变为红色固体,并且生成能使澄清石灰水变浑浊的气体。12.一氧化碳还原氧化铁3CO+Fe2O32Fe+3CO2;红色固体变为黑色固体,并且生成能使澄清石灰水变浑浊的气体。13.碳还
21、原氧化铜C+2CuO2Cu+CO2;14.碱式碳酸铜加热分解Cu2(OH)2CO32CuO+CO2+H2O;绿色粉末变为黑色固体,并且生成能使澄清石灰水变浑浊的气体和水蒸气。初三化学方程式总结:与氢气有关1.氢气在空气中燃烧化学方程式:2H2O;淡蓝色的火焰。2.锌与稀硫酸反应生成氢气Zn+H2SO4=ZnSO4+H2;有可燃烧的气体(氢气)生成。3.铁与稀硫酸反应生成氢气Fe+H2SO4=FeSO4+H2;变成浅绿色的溶液,同时放出气体。4.镁与稀硫酸反应生成氢气Mg+H2SO4=MgSO4+H2;5.铝与稀硫酸反应生成氢气2Al+3H2SO4=Al2(SO4)3+3H2;6.锌与稀盐酸反应
22、生成氢气Zn+2HCl=ZnCl2+H2;7.镁与盐酸反应生成氢气Mg+2HCl=MgCl2+H2;8.铁与盐酸反应生成氢气Fe+2HCl=FeCl2+H2;溶液变成浅绿色,同时放出气体。9.铝与稀盐酸反应放出氢气2Al+6HCl=2AlCl3+3H2;10.氢气还原氧化铜H2+CuOCu+H2O;黑色固体变成红色固体,同时有水珠生成。11.氢气还原氧化铁2Fe2O3+3H22Fe+3H2O;有水珠生成,固体颜色由红色变成黑色(铁片是银白色,但铁粉是黑色)。12.电解水分解为氢气和氧气:2H2+O2。13.水蒸气高温条件下与碳反应生成水煤气:H2O+C H2+CO。14.水蒸气高温条件下与铁反
23、应:4H2O+3Fe Fe3O4+4H与铁有关1.铁在氧气中燃烧 Fe3O4;铁剧烈燃烧,火星四射,生成黑色的固体。2.铁与酸发生置换反应与盐酸反应,化学方程式:铁粉慢慢减少,同时有气体生成,溶液呈浅绿色。与稀硫酸反应:3.铁与盐发生置换反应与硫酸铜反应,化学方程式:Fe+CuSO4=FeSO4+Cu;铁逐渐溶解,生成红色金属。与硝酸银反应,化学方程式:Fe+2AgNO3=Fe(NO3)2+2Ag 实验现象:铁逐渐溶解,生成银白色的金属。4.铁的化合物的反应氯化亚铁与氢氧化钠反应:FeCl2+2NaOH=Fe(OH)2+2NaCl;有白色絮状沉淀生成。氢氧化亚铁与氧气、水的反应:4Fe(OH)2+O2+2H2O=4Fe(OH)3;氢氧化铁在
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1