1、图1:直线一级倒立摆模型 设系统的相关参数定义如下:M:小车质量m:摆杆质量 b:小车摩擦系数l:摆杆转动轴心到杆质心的长度I:F:加在小车内的力x:小车位置:摆杆与垂直方向上方向的夹角:摆杆与垂直方向下方向的夹角(摆杆的初始位置为竖直向下)如下图2所示为小车和摆杆的受力分析图。其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量、 图2:小车和摆杆受力分析图应用牛顿方法来建立系统的动力学方程过程如下:分析小车水平方向所受的合力,能够得到以下的方程:由摆杆水平方向的受力进行分析能够得到下面的等式:将此等式代入上述等式中,能够得到系统的第一个运动方程:为了推出系统的第二个运动方程,我们对摆杆
2、垂直方向上的合力进行分析,能够得到下面的方程:力矩平衡方程如下:注意:此方程中力矩的方向,由于故等式前面有负号。合并这两个方程,约去P和N,得到第二个运动方程:设=,当摆杆与垂直向上方向之间的夹角与1(单位是弧度)相比特别小时,即时,则能够进行如下近似处理:线性化后得到该系统数学模型的微分方程表达式:1、2状态空间数学模型控制系统的状态空间方程可写成如下形式:解代数方程可得如下解:整理后可得系统的状态空间方程:关于质量均匀分布的摆杆,其转动惯量为:代入微分方程模型中得:化简后可得:设则有:1、3实际系统模型实际系统参数如下:M:小车质量,0、5;m:摆杆质量,0、2K;b:小车摩擦系数,0。N
3、/m/sec;l:摆杆转动轴心到杆质心的长度,0、m;摆杆质量,、06Km;T:采样时间,。05s。将上述系统参数代入可得系统实际模型。摆杆角度和小车位移的传递函数:摆杆角度和小车加速度之间的传递函数:摆杆角度和小车所受外界作用力的传递函数:以外界作用力作为输入的系统状态方程:以小车加速度作为输入的系统状态方程:2、状态空间极点配置 经典控制理论的研究对象主要是单输入单输出的系统,控制器设计时一般需要有关被控对象的较精确模型,现代控制理论主要是依据现代数学工具,将经典控制理论的概念扩展到多输入多输出系统。极点配置法通过设计状态反馈控制器将多变量系统的闭环系统极点配置在期望的位置上,从而使系统满
4、足瞬态和稳态性能指标。 设计要求:用极点配置方法设计控制器,使得在小车内施加0、1的阶跃信号时,闭环系统的响应指标为:(1)要求系统调整时间小于s (2)稳态时摆杆与垂直方向的夹角变化小于0。弧度 状态方程为:选择控制信号: 可解得: 直截了当利用MATLB极点配置函数K,PRE,MESSG=PACE(,P)来计算。选取调整时间s=2。0s,阻尼比为0。5,可得期望的闭环极点:3,u4为一对主导极点,u,距离闭环主导极点5倍,可忽略其对主导极点的影响、矩阵(ABK)的特征值是方程式| Is(A-BK)|=0的根:这是s 的四次代数方程式,可表示为适当选择反馈系数 k1 , 2,k3,k 系统的
5、特征根能够取得所希望的值。把四个特征根设为四次代数方程式的根,则有假如给出的是实数或共轭复数,则联立方程式的右边全部为实数。据此可求解出实数k1,k,k3,当将特征根指定为下列两组共轭复数时 = , 又 = 29。, b =3利用方程式可列出关于1,k2,k3,k的方程组:求解后得k1=-65。301k2=29、388k=11、224k21、351因此反馈矩阵:即施加在小车水平方向的控制力 u:=KX= 65、361x+ 29、388 14、3224 2。3513、仿真验证图3:倒立摆极点配置仿真框图能够看出在干扰的情况下,系统在s之内基本上能够恢复到新的平衡位置。图:直线一级倒立摆状态空间极
6、点配置MAALABSULINK仿真结果图 图5:直线一级倒立摆状态空间极点配置实时控制结果(施加干扰)在给倒立摆施加干扰后,系统的响应如图12所示,系统的稳定时间在3s之内,达到设计要求。4、结论传统的非线性系统分析方法需要非线性系统的精确模型,而实际中存在的大量复杂的多变量非线性系统则表现为参数的不确定性和结构的不确定性。本文用现代控制理论的极点配置方法对直线一级倒立摆控制进行了分析,并用Sui进行了倒立摆的系统仿真、通过实验,得到如下结论:(1) 关于具有非线性、多变量等特点的倒立摆系统进行系统分析,分析其非线性因素,在误差允许的范围内忽略某些次要因素将其线性化。()状态空间极点配置控制器
7、既能实现对摆杆角度的控制,又能控制小车位移。(3)基于极点配置法对直线型一级倒立摆系统设计的控制器,可使系统在特别小振动范围内保持平衡,稳态时摆杆与垂直方向的夹角变化小于0、弧度,系统稳定时间约为3 S。5、参考文献1于长官,现代控制理论第3版、哈尔滨工业大学出版社,2、郭钊侠,方建安,苗清影。倒立摆系统及其智能控制研究。东华大学学报,2003,29(2):226、3刘豹、现代控制理论M、北京:机械工业出版社,2005、4王正林,王胜开、MATLASiuln与控制系统仿真M、北京:电子工业出版社,200、5段学超,仇原鹰,段宝岩,等、平面倒立摆自习惯滑模模糊控制、控制与决策,207、2():77477、6郑科,徐建明,俞立、基于TS模型的倒立摆最优保性能模糊控制J、控制理论与应用,004,(5),703-708、
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1