ImageVerifierCode 换一换
格式:DOCX , 页数:16 ,大小:416.48KB ,
资源ID:22445617      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/22445617.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(天线设计毕业论文docxWord格式.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

天线设计毕业论文docxWord格式.docx

1、给人们的生活工作带来了很大的方便与快捷。在整个无线通信系统中,用来辐射或接收无线电波的装置成为天线,而通信、雷达、导航、广播、电视等无线电技术设备都是通过无线电波来传递信息的,均需要有无线电波的辐射和接收,因此,同发射机和接收机一样,天线也是无线电技术设备的一个重要组成部分,其性能的优良对无线通信工程的成败起到重要作用。天线的作用首先在于辐射和接收无线电波,但是能辐射或接收电磁波的东西不一定都能作为天线。任何高频电路,只要不被完全屏蔽,都可以向周围空间或多或少地辐射电磁波,或从周围空间或多或少地接收电磁波,但是任意一个高频电路并不一定能用作天线,因为它的辐射或接收效率可能很低,要能够有效地辐射

2、或接收电磁波,天线在结构和形式上必须满足一定的要求。快速发展的移动通信系统需要的是小型化、宽频带、多功能(多频段、多极化)、高性能的天线。微带天线作为天线家祖的重要一员,经过近几十年的发展,已经取得了可喜的进步,在移动终端中采用内置微带天线,不但可以减小天线对于人体的辐射,还可使手机的外形设计多样化,因此内置微带天线将是未来天线技术的发展方向之一,设计出具有小型化的微带天线不但具有一定的理论价值而且具有重要的应用价值,这也成为当前国际天线界研究的热点之一。 因此,一副实用且性能良好的天线既要满足系统易于集成化的要求,同时也要满足各个系统的兼容性、可靠性要求,即为对天线小型化、宽频带、多频带的设

3、计要求,因此本文主要对现代无线通信系统的多频带、宽带、超宽带天线进行研究和设计。1.2微带天线的发展概述早在1953年G. A. DcDhamps教授就提出利用微带线的辐射来制成微带微波天线的概念。但是,在接下来的近20年里,对此只有一些零星的研究。直到1972年,由于微波集成技术的发展和空间技术对低剖面天线的迫切需求,芒森(REMunson)和豪威尔(JQHowell)等研究者制成了第一批实用的微带天线1。随之,国际上展开了对微带天线的广泛研究和应用。1979年在美国新墨西哥州大学举行了微带天线的专题目际会议,1981年IEEE天线与传播会刊在1月号上刊载了微带天线专辑。至此,微带天线已形成

4、为天线领域中的一个专门分支,两本微带天线专辑也相继问世。80年代中,微带天线无论在理论与应用的深度上和广度上都获得了进一步的发展;今天,这一新型天线已趋于成熟,其应用正在与日俱增。微带天线具有结构紧凑、外观优美、体积小重量轻等优点,得到广泛的应用。1.3小型化、多频带/宽频带天线的研究现状1.3.1天线小型化、宽频带研究现状天线作为无线收发系统的一部分,其性能的优劣对整个系统的性能有着重要的影响。微带天线带宽相对较窄,通常低于3%,而无线通信技术的发展,特别是高速数据传输系统以及军用宽带无线系统的发展,要求天线具有更高的带宽。同时在随着电路集成度的提高,系统对天线的体积有着更高的要求,尤其是一

5、些军用和民用的领域,如导弹制导系统和手机等等,物理空间的限制成为系统设计必须考虑的重要因素。此外随着天线尺寸的减小,天线效率会显著降低,带宽也会随之变窄。如何在天线带宽等性能受尺寸限制的情况下,设计出宽带小型化的微带天线是近年出现的一个热门课题。当然优化微带天线设计方法的探讨有着重要的意义。1.3.2多频带天线的研究现状多频天线主要有多频振子天线2、多频缝隙天线3和多频微带天线4,多频振子天线主要通过添加不同长度的谐振振子来实现多频带,多频缝隙天线主要通过在辐射单元以及辐射地结构上进行开缝改变电流流向来实现多频化,多频微带天线则主要通过调节微带线的长度、宽度以及不同微带线之间的距离来实现多频化

6、。随着1.4论文的主要研究内容第二章微带天线理论(参看宝儿书)第三章多频带天线设计3.1天线多频化实现技术3.2基于分形结构的多频微带天线设计3.1.1三、微带天线的小型化技术3.1 天线加载在微带天线上加载短路探针 4 ,通过与馈点接近的短路探针在谐振空腔中引入耦合电容以实现小型化,典型结构如图3.1 所示。其缺点是: (1) 阻抗匹配极大地依赖于短路探针的位置及其与馈电点的距离,往往需要馈电点的精确定位和十分微小的,这给制造公差提出了苛刻要求。(2) 带宽窄。(3) H 面的交叉极化电平相对较高。将短路探针替换为低阻抗的切片电阻(chip resistor) ,在进一步降低谐振频率的同时还

7、可增加带宽。图3.1 加载短路探针的微带天线3.2 采用特殊材料基片从天线谐振频率关系式可以知道,谐振频率与介质参数成反比,因此采用高介电常数(如陶瓷材料) 或高磁导率(如磁性材料) 的基片可降低谐振频率,从而减小天线尺寸。这类高介质天线的主要缺陷是: (a) 激励出较强的表面波,表面损耗较大,使增益减小,效率降低。(b) 带宽窄。为提高增益,常在天线表面覆盖介质(如图3.2 所示) 。图3.2 采用高 的多层介质微带天线3.3 表面开槽(slot)5当在贴片表面开不同形式的槽或细缝时(如图3.3 所示) ,切断了原先的表面电流路径,使电流绕槽边曲折流过而路径变长,在天线等效电路中相当于引入了

8、级联电感。由于槽很窄,它可模拟为在贴片中插入一无限薄的横向磁壁。选择适当的槽从而控制贴片表面电流以激励相位差90的极化简并模,还可形成圆极化辐射,以及实现双频工作。图3.4 为表面开槽的口径耦合馈电的小型圆极化贴片天线。图3.3 表面开槽的小型化微带天线 图3.4 小型口径耦合圆极化微带这类天线结构简单,成本低廉,加工方便,其特点是:随槽的长度增加,天线谐振频率降低,天线尺寸减小,但尺寸的过分缩减会引起性能的急剧劣化,其中带宽(一般约为1 %) 与增益尤为明显,而方向性影响不大。如何破除增益和带宽这两个限制,开发实用化、易调谐的此类天线尚待深入研究。3.4 附加有源网络缩小无源天线的尺寸,会导

9、致辐射电阻减小,效率降低。可利用有源网络的放大作用及阻抗补偿技术弥补由于天线尺寸缩小引起的指标下降。有源天线具有以下良好特性: (1) 工作频带宽。利用有源网络的高输出阻抗、低输入阻抗,天线带宽高低端频比可达2030 。(2) 增益高(可达10dB 以上) ,方向性好。(3) 便于实现阻抗匹配。(4) 易实施天线方向图,包括主波方向、宽度、前后辐射比等的电控。(5) 有源天线阵具有单元间弱互耦的潜在性能。但有源天线需考虑噪声及非线性失真问题。3.5 采用特殊形式这些方法总的思路是使贴片的等效长度大于其物理长度,以实现小型化目的。近年来由于无线通信的需求,有大量方案提出,如蝶形(bow2tie)

10、 (如图3.5所示) 、倒F 型( PIFA ,planar inverted2F antenna)(如图3.6 所示) 、L 形、E 形、Y 形、双C 形、层叠短路贴片(stacked shorted patch) 等等。图3.5 双频带蝶型微带天线 图3.6 电容加载的倒F型微带天线(PIFA)四、结束语微带天线由于具有体积小、重量轻、剖面薄、易与飞行器共形、易于加工、易与有源器件和电路集成为单一模块等诸多优点,因而自其诞生以来就得到社会各界的广泛研究与应用。通讯产品越来越小型化,物理空间的限制成为系统设计必须考虑的重要因素,因此天线的小型化成为天线设计的一个研究热点。如何设计出具有小型化

11、的微带天线是当前微带天线设计的难点与重点。第二章1.课题的研究背景及意义从马可尼横跨大西洋的无线电通信创举,到今天千百万用户随时随地畅通无阻的漫游,从现代高科技战争中战略和战术武器使用,到日常生活中便携式通信设备普及,射频无线通信技术取得了举世瞩目的成就,并且越来越紧密的影响和改变着我们的生活。刚刚过去的十年无疑是无线通信爆炸式发展和普及的十年,射频电子技术已经成为现代无线通信快速发展的基础。通过近十年的发展来看,无线电通信技术变得更加实用,随着通信事业的飞速发展,射频前端电路的集成度越来越高,宽带化要求日益增加,低成本、低功耗、小型化、重量轻等设计要求越来越苛刻,因此射频前端电路与系统宽带化

12、设计显得十分必要,具有巨大的经济效益和社会意义。天线是无线电系统中的重要部件之一,其主要功能是辐射和接收电磁波1,通信系统中的雷达、导航、广播、电视等都是通过电磁波来传递信息的。随着现代通信技术的快速发展,基于分形结构的多频微带天线设计1分形天线结构多频天线主要有多频振子天线2、多频 缝隙天线3和多频微带天线4,这些多频天线辐射结构之间相互独立,没有特定变化规律,而分形几何结构独有空间填充性和自相似性的特点,在多频微带天线的设计中可实现天线多频化、小型化的目的4。目前采用分形结构来实现多频工作的有Sierpinski三角形分形5、寄生分形6、方形分形7、树状分形8结构等,它们通过改变分形次数而

13、不引入有耗加载量,具有的规律性结构使得小型化天线设计得到了简化随着现代通信技术的快速发展,小型化、多功能成为人们对各种手持设备的不断追求,这就需要一个终端设备能够同时在多个频段工作。2G通话频段(GSM1800)、世界公开使用的无线频段(ISM2.4GHz)和用于无线通信的城域网频段(WiMAX)是小型多功能手持设备工作的重要频段,因此设计出能覆盖上述频段的天线具有实际意义.本文拟采用Sierpinski分形结构,利用加载谐振和匹配枝节的办法,设计一款应用于GSM1800(1710MHz1850MHz)、ISM(2.4GHz)和WiMAX (3.3GHz3.6GHz)的全向辐射微带天线。1 设

14、计原理Sierpinski分形有Sierpinski三角和Sierpinski毯两种,其中Sierpinski三角的形式多样,应用较为广泛9。Sierpinski三角形天线进行分形之前,其初始元会在低频处产生一个谐振点,随着天线分形结构迭代次数的不断增加,天线的生成元不断减小,而天线将保持原有的谐振点不变并在高频处增加新的谐振点,谐振点的个数与分形的迭代次数相等,并且在各谐振频点天线都具有相似的辐射性能。Sierpinski三角形分形单元如图1所示。 图1 Sierpinski三角形分形单元Sierpinski三角形分形结构具有多频特性,且各个谐振频点成比例。比例系数可通过改变垫片的形状来调节

15、,但不能无限次分形,其存在的截断效应将导致第一谐振点与其它谐振点不满足谐振频率9 (1)比例关系。其中,为空气中的光速,为迭代前三角形的高度,为天线的缩放因子。 若通过加载枝节的方法进行调节,则可以解决仅采用Sierpinski三角形分形结构时频点位置难以调节和不能无限次分形实现多频化的问题。加载的微带枝节长度和宽度的表示式分别为10 (2) (3)为相对介电常数,为有效介电常数,其计算式为10 (4)为等效长度 ,由式(5)计算10 (5) 2 天线设计2.1天线模型设计 该天线基于Sierpinski分形结构,采用两次三角形分形分别产生1.7GHz和3.5GHz两个谐振点,加入短谐振枝节产

16、生2.4GHz的谐振点,加入长匹配枝节调节低频1.7GHz谐振点后移至1.8GHz处,克服了低频谐振点因加入短谐振枝节以及耦合的影响出现前移的问题,背面采用2.3mm宽的反射参考地结构,保证天线各处辐射大小相等,实现全向辐射。设计天线模型如图2所示。(a) 正面 (b) 背面图2 天线模型2.2 模型参数设计采用聚四氟乙烯材料为介质基板,介电常数()为3.5,基板尺寸为53.6mm*46.7mm*1mm。由式(1)可以计算求得Sierpinski三角形分形辐射贴片的尺寸如下。初始Sierpinski分形单元高度:=46.7mm初始Sierpinski分形单元宽度:Want=53.6mm第两次分

17、形后分形单元的长度:L1=17.1mm,L2=16.1mm, L3=25.7mm,L4=12mm第两次分形后分形单元的宽度:W1=28.6mm,W2=12.5mm由微带贴片理论公式(2)、(3)计算加入短谐振枝节的尺寸如下。 短谐振枝节长度:L5=24.9mm 短谐振枝节宽度:W4=1mm通过1/4波长阻抗转换,加入长匹配枝节的长度为:L6=34.6mm。 由于受介质均匀性、软件本身存在的仿真误差等影响,实际优化长度与理想计算长度会稍有偏差,最终设计天线以实际优化长度为主。3 仿真优化与结果分析 利用三维电磁仿真软件(Ansoft HFSS15.0)对天线结构、参数和辐射方向性进行仿真分析,仿

18、真结果分别如图3、图4图5和图6所示。 图3为只有分形结构和在分形结构上分别加载短谐振枝节、长匹配枝节时天线谐振点和回波损耗的对比。图3加入不同枝节的天线回波损耗由图3可知,当仅采用Sierpinski分形结构时,产生低频1.7GHz和高频3.5GHz两个谐振点;加入短谐振枝节,可产生1.65GHz、2.4GHz、3.5GHz 3个谐振点,与未加枝节时相比,低频1.7GHz谐振点的位置发生前移,但产生了新的谐振点;加入长匹配枝节,产生1.8GHz、3.5GHz两个谐振点,与加入短枝节相比,低频谐振点则向后移动,频点位置有所改善,但并没有产生更多的谐振点,因此,综合考虑加入短谐振枝节和长匹配枝节

19、对频点位置的影响,若同时加入长短枝节则可以实现该天线多频化、小型化的设计。 图4为不同的耦合距离对天线谐振点和回波损耗的影响对比图。图4耦合间距的优化由图4看出,耦合距离的变化对天线谐振频率点位置的影响较小,但对回波损耗的大小影响较大,综合考虑3个频段的回波损耗,当耦合距离S=0.6mm时,回波损耗在3个谐振点处均达到-25dB以下,达到最优。 图5为设计天线同时加入长短枝天线的谐振频点和回波损耗的变化图。图5有无似对称枝节的天线结构仿真回波损耗对比由图5可以看出,同时加入长短枝节以及耦合后,既增加了2.4GHz谐振频率,也改善了低频1.7GHz的频点位置和高频谐振处的带宽。 图6为天线在1.

20、8 GHz、2.4 GHz和3.5 GHz 3个谐振点的E面、H面辐射方向。(a) 1.8GHz(b) 2.4GHz (c) 3.5GHz图6 天线的E面、H面方向图6中,该天线具有良好的全向远场辐射特性,说明背面采用了较窄的地结构设计该天线保证了天线在远场区等距离处辐射大小相等,实现全向辐射。将仿真天线模型导出版图进行加工,加工实物如图7所示。 (b)背面 图7天线加工实物 4实测结果与分析将该天线通过SMA连接器连接到矢网仪(Agilent Technologies E5071C 300 MHz20 GHz)进行测试,测试结果如图8所示。图8天线测试环境 将图8中测试结果导出并与仿真结果进

21、行对比,对比结果如图9所示。图9 天线仿真与测试回波损耗图9中,天线仿真回波损耗在-10dB以下的频段为1.69GHz1.85GHz、2.25GHz2.54GHz、3.27GHz3.69GHz,测试回波损耗在-10dB以下的频段为1.65GHz1.83GHz,2.37GHz4.1GHz。与仿真结果相比,天线测试结果中1.8GHz谐振频点稍向前偏移,在2.4GHz和3.5GHz时,测试带宽与仿真带宽相比都有所提高,这主要是由于材料及制作工艺存在误差引起的,在误差允许范围内,实测结果与仿真结果吻合。5 结语利用分形天线结构的空间填充性和自相似性的优点实现了天线的小型化设计,通过加入谐振枝节和匹配枝节实现了天线的多频化设计。采用三维电磁仿真软件(Ansoft HFSS15.0)进行仿真,并将该天线通过SMA连接器连接到矢网仪(Agilent Technologies E5071C 300 MHz20 GHz)进行测试,仿真和测试天线回波损耗在-10dB以下的频率范围均覆盖了GSM1800(1710MHz1850MHz)、ISM(2.4GHz)、WIMAX(3.3GHz3.6GHz)频段,实现了该多频化、小型化微带天线的设计。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1